

HORIZON 2020 Coordination and Support Action Grant Agreement No: 652641

CONNECTING SCIENCE WITH SOCIETY

Deliverable D3.2

European Polar Infrastructure Catalogue

© EU-PolarNet Consortium

Submission of Deliverable

Work Package	WP 3
Deliverable no. & title	D3.2 European Polar Infrastructure Catalogue
Version	Draft V1
Creation Date	25.06.2016
Last change	14.07.2016
Status	Draft
	WP lead accepted
	Executive Board accepted
Dissemination level	PU-Public
	PP- Restricted to programme partners
	RE- Restricted to a group specified by the consortium
	CO- Confidential, only for members of the consortium
Lead Beneficiary	IPEV (partner 6)
Contributors	🖂 1 – AWI, 🗌 2 – CNRS, 🖂 3 - NERC-BAS, 🗌 4 - CNR-DTA,
	🗌 5 – SPRS, 🔀 6 – IPEV, 🔀 7 - IGOT-UL, 🗌 8 – RUG, 🗌 9 -
	RCN, 🗌 10 – MINECO, 🔀 11 – CSIC, 🗌 12 - UW-APRI, 🗌 13 –
	BAI, 🗌 14 – GEUS, 🔄 15 – VUB, 🔄 16 – UOULU, 🔄 17 –
	RBINS, 🗌 18 - IGF PAS, 🔄 19 - IG-TUT, 🗌 20 – AMAP, 🗌 21 –
	WOC, 22 - GINR
Due date	30.06.2016
Delivery date	26.07.2016

Table of Contents

	Pages
1. Introduction	4
	-
2. Available information and methodology	
2.1 Sources of information on Polar research Infrastructures	5
Polar facilities	
Vessels	
Aircrafts	
Large instruments	_
2.2 Methodology	6
Consultation with EU-PolarNet Partners	
Facilities database	
Vessel database	
Aircrafts	
Large instruments	
3. Data	٥
3. Data 3.1 European Polar Research Facilities database	و م
3.2 European Polar Research Vessels database	
5.2 European Polar Research Vessels uatabase	19
4. Results	20
4.1 European Polar Research Facilities	
4.1.1 Updated information on European Polar Research Facilities	20
4.1.2 Examples of comprehensive information	32
Concordia Station	32
Abisko Station	37
4.2 European Polar Research Vessels	
4.2.1 General information	42
4.2.2 Technical information	44
4.2.3 Scientific equipments on board	46
4.3 European Polar Research Aircrafts	
4.3.1 The fleet of AWI	46
4.3.2 The fleet of BAS	47
5. European Polar Infrastructures Catalogue	53

1. Introduction

Europe has a long tradition and a very strong reputation for world-class scientific research in the Polar Regions. This research is enabled and supported by **significant and substantial scientific infrastructures,** facilities and platforms operated by many European nations in both the Arctic and the Antarctic. Whilst there is already a degree of coordination and cooperation between European polar operators there is great potential for these considerable resources to be used more coherently and effectively to deliver the highest quality European research. There is also a significant opportunity to link much more productively with other nations in the wider international polar science community, including those without infrastructure or facilities and with businesses that operate infrastructures in the Polar Regions, such as shipping. This will allow implementation of mechanisms for **joint programming of infrastructure,** particularly **of polar ships to allow bigger and more complex science projects** to be undertaken.

The EU-PolarNet consortium comprises **all infrastructures** (research vessels, stations, aircraft, observatories, autonomous instrumentation on land, in air and ocean research) of the **European Union in the Arctic and 95% of those present in the Antarctic**. These polar research infrastructures are powerful assets for supporting a vast range of scientific research and represent significant investments made by individual nations, yet lack an overall co-ordinated framework for shared access and interoperability. EU-PolarNet therefore aims at initiating a **European Network of Polar Operations** that will develop a management system for trans-national access to these infrastructures. These will thereby be made available to the whole European research community, their international partners and other users engaged in the Polar Regions to deliver the highest quality and relevant research.

However, achieving these objectives first requires a comprehensive, exhaustive and updated mapping of the European polar research infrastructures, which will serve as a basis of the future EU-PolarNet work and planning.

In 2007, the European Polar Consortium, (EUROPOLAR), an ERA-NET funded by the European Commission during FP6, provided an overview of European polar research infrastructures controlled and owned by European countries that operate in the Arctic and Antarctic. According to this analysis, the 24 organisations which were members of the European Polar Board (representing 17 European nations) managed and operated 22 Antarctic stations, 26 Arctic stations, 13 polar vessels and a substantial polar air support and airborne research capability. However, the 2007 inventory requires a thorough update and should be expanded in order to present an encompassing vision of the scientific capacities of these infrastructure and assets, including their role in the environmental monitoring of the Polar Regions.

The present Deliverable 3.2 is one of the objectives of the Task 3.1 of the Eu-PolarNet project:

D3.2 European Polar Infrastructure Catalogue incl. all types of polar infrastructures, facilities and large instruments (such as AUV's and ROV's) based on the model of the INTERACT Arctic station catalogue and with the agreement and participation of the INTERACT community. It will provide all necessary information on the capacities of European Arctic and Antarctic infrastructures to support science and their availability to international scientists.

2. Available information and methodology

2.1 Sources of information on polar research infrastructures

The two task leaders (IPEV and IGOT) firstly explored the availability of data on polar research infrastructure, their degree of comprehensiveness, as well as their updating status.

Polar research facilities

Regarding the scientific facilities established in the Arctic, a lot of information is already available through INTERACT (<u>http://www.eu-interact.org/</u>), an infrastructure project under the auspices of SCANNET, a circum-arctic network of currently 77 terrestrial field stations in northern Europe, Russia, US, Canada, Greenland, Iceland, the Faroe Islands and Scotland, as well as stations in northern alpine areas. INTERACT is funded by the EU.

In Antarctica, information is less comprehensive and not updated. Data was collected a few years ago by the Council of Managers of National Antarctic Programs (COMNAP), the international organization which brings together those organizations that have responsibility for delivering and supporting scientific research in the Antarctic Treaty Area on behalf of their respective governments (https://www.comnap.aq). COMNAP consists of 30 National Antarctic Program Members, 15 of them being European. The information currently available in not COMNAP Antarctic research facilities on is comprehensive (https://www.comnap.aq/Information/SiteAssets/SitePages/Home/Antarctic Facil ities_List_13Feb2014.xls).

Vessels

Eurofleets, a Research Infrastructures project under the 7th Framework Programme of the European Commission (<u>http://www.eurofleets.eu</u>), aimed at consolidating the coordination of a pan-European distributed research fleet infrastructure with a common strategic vision and promoting access to European marine research vessels and equipment. With these objectives, Eurofleets II established very recently a European vessel database (<u>http://www.eurofleets.eu/rvs/</u>).

Aircrafts

Regarding the aircrafts used by European Polar programs in the Arctic or in the Antarctic, it appears that the number is scarce and they are operated by two member organisations of the EU-PolarNet consortium, AWI (Germany) and BAS (United Kingdom).

Both organizations are partner of EUFAR2, an Integrating Activity of the 7th Framework Programme (FP7) of the European Commission, following three previous contracts under FP5, FP6 and FP7. EUFAR2 brings together 24 European institutions and organisations involved in airborne research, operating 17 instrumented aircraft and providing access to 3 remote-sensing instruments.

Large instruments

Currently, there is no information or listing of national or international large instruments used in the Polar Regions for scientific research. Moreover, the remote operated vehicles (such as AUV and ROV) are becoming more and more numerous and the technology is rapidly evolving. For this reason, an attempt of listing such large instruments is nearly impossible and the list would be quickly obsolete. Consequently, it was decided to not consider these large instruments in the current Task 3.1.

As a conclusion, at the initial stage of this task, it appeared that the information on the European Polar infrastructures was disperse and very different in comprehensiveness, depending on their nature and geographical location. Consequently, the task leaders adopted the objective to gather the information in a single database on a homogeneous way. This approach required the establishment of formal agreements between EU-PolarNet and other entities like INTERACT, COMNAP and Eurofleets II in order to use the already available data and to increase these sets of information with additional data, which will be useful for the EU-PolarNet overall objectives.

2.2 Methodology

Consultation with EU-PolarNet Partners

Taking advantages of international meetings (e.g. ASSW, European Polar Board General Assemblies), several workshops were organized in 2015 and 2016 in order to collect the advices of other EU-PolarNet partners on the proposed approach, as well as on the desired data on the European polar infrastructures.

- European Polar Board Meeting ASSW **Toyama**, Japan, **April 24 2015**: presentation of the project, first exchanges with the EU-PolarNet partners.
- Task 3.1 Meeting, Lisbon, Portugal, October 6-7th 2015: Small « task group » including task leaders staff, INTERACT representatives, EU-PolarNet WP1 & WP3 leaders; discussed cooperation, objectives, content of the catalogue, possible structure of the database etc.
- Task 3.1 Meeting, Vienna, Austria, November 4th 2015: presentation of a possible structure of the database to the European Polar Board Members and EU-PolarNet partners; validation of the structure.
- EU-PolarNet 2nd General Assembly, **Fairbanks**, Alaska, USA, **March 13th 2016**: report on the Task 3.1 status and planned actions; this meeting offered the room for comments and suggestions prior finalization of the infrastructure catalogue.

In order to build the infrastructure catalogue, it was decided 1) to not reinvent the wheel and to use the existing information, mainly through partnerships with other communities or EU Projects (INTERACT, Eurofleets II), 2) to collect additional information, which could be useful for the EU-PolarNet objectives, and 3) to adopt different approaches depending on the type of infrastructures.

The following approaches were consequently developed:

Facilities database

According to the discussions held during the above mentioned meetings between the EU-PolarNet partners, a station database (or also called facilities database because including more than stations, but also camp, shelters etc.) was designed using Microsoft Office Access. The database started with a compilation of the existing field in the INTERACT station catalogue, followed by a detailed discussion with the consortium partners, which resulted in the inclusion of new data fields and on a standardization of the database, both for including Arctic and Antarctic facilities data. This was a

complex process involving the agreement of both COMNAP and INTERACT. Databases on the Arctic and the Antarctic, respectively, will be made available to these two organizations for their own use. This work was done by IGOT (Gonçalo Vieira, Luis Encalada and Carla Mora). Once the structure of the database was fixed (after the Vienna meeting in November 2015), IGOT developed a specific form to be filled for each operator (Figure 1). Forms were pre-filled with the available information from COMNAP and INTERACT before submission to the managers of the facilities, who updated the existing fields and provided new information for the new fields. The work was conducted separately for the Arctic and the Antarctic:

- Arctic: the managers of the European stations already present in the INTERACT station catalogue were asked to complete the information through the INTERACT channel; for the few European stations not members of INTERACT (France, Germany, Italy), the managers were asked by INTERACT (Jan-Elmer Topp-Jørgensen, Morten Rasch) to review and complete the form for their stations.

- Antarctic: information on Antarctic facilities was much poorer than for the Arctic. For this reason, COMNAP was interested in the EU-PolarNet Task 3.1 project and decided to collaborate and to fully organize the data collection among its members (covering all the National Antarctic Programmes operating facilities in Antarctica). COMNAP (Michelle Rogan-Finnemore, Andrea Colombo) sent the forms to the managers responsible for the operation of each Antarctic facility. Once data were collected, COMNAP sent to IGOT the extract of the database related to European Antarctic infrastructures.

💷 Station	Frank South Street Street Mill Street Street	
EU-POLARNET COMNAP INTERACT		STATION FORM
Station code Facility name* Website	B INTERACT Status	Ackground * Compulsory Data source
Location Current status of facility* Operating country*	Type* First opened/Opening year (yyyy)* Operational period*	Contact person* Email* Date of last update (dd/m/yyyy)*
Introduction		
Facility name and operator*		
Location*		
Operator/Manager		
Facility operator/ manager*	Institution managing/ operating the facility*	
Type of entity*	Contact facility*	
Other type of entity	Website (operator)	
Partner Institutions		
Partnership Partner institution name		Partner country
Location		
Latitude Region* Longitude Antarctic environmental domain	•	Altitude of facility (m)*
Previous Save form Next New Find form		Close Form

Figure 1 – Form sent to the manager of Polar Facilities in order to collect updated information on these infrastructures

Vessel database

In recent years the European Commission has promoted through the Eurofleets 2 project an analysis of the European status of the Polar Research Vessels (PRVs). The EU-PolarNet partners estimated that the most useful information on these PRVs was consequently already collected and updated. It was agreed that the database established by Eurofleets 2 would be made available to the EU-PolarNet project and contribute to its European infrastructure catalogue.

Here we summarize the studies on the large scale facilities after assembling information on PRVs operating at both poles (Arctic and Antarctica).

In our presentation, we have distributed the PRV's in accordance with the new International Maritime Organization (IMO) Polar Code classification. 3 categories are distinguished:

- **Category A ship**: Category A ship means a ship designed for operation in polar waters in at least medium first-year ice, which may include old ice inclusions.
- **Category B ship**: means a ship not included in category A, designed for operation in polar waters in at least thin first-year ice, which may include old ice inclusions.
- **Category C ship**: means a ship designed to operate in open water or in ice conditions less severe than those included in categories A and B.

Among these 3 categories, 7 polar classes are defined on the basis of their operational capacities in the ice:

Polar Class	Ice descriptions (based on WMO Sea Ice Nomenclature)
PC 1	Year-round operation in all polar waters
PC 2	Year-round operation in moderate multi-year ice conditions
PC 3	Year-round operation in second-year ice which may include multi-year ice inclusions
PC 4	Year-round operation in thick first-year ice which may include old ice inclusions
PC 5	Year-round operation in medium first-year ice which may include old ice inclusions
PC 6	Summer/autumn operation in medium first-year ice which may include old ice inclusions
PC 7	Summer/autumn operation in thin first-year ice which may include old ice inclusions

Most of the information has been assimilated from the EU-project Eurofleets2 and information by EurOcean, Council of Managers National Arctic Program (COMNAP), International Research Ship Operators (IRSO), European Research Vessel Operators (ERVO), etc.

Aircrafts

Because the main European polar research aircrafts are operated by Germany (AWI) and United Kingdom (BAS), we asked these two organizations to produce a description of their aircraft fleet for inclusion in the present report.

Large instruments

It was decided that autonomous instruments would be excluded from the infrastructure catalogue, as these are frequently renewed and the update of the database/catalogue would be too extensive. Rather showcases will be included in the catalogue.

3. Data

3.1 European Polar Research Facilities database

The following structure of the polar facilities database was adopted, taking into account the fields already present in the INTERACT Station catalogue database, as well as the suggestions from partners, and from COMNAP for the Antarctic facilities.

The compulsory fields are indicated with an *.

Background

Fields	Field comment / proposed selections
* Station Code	Code used only during the catalogue's production.
* Facility Name	
INTERACT Status	This field is related to Arctic facilities only.
Website	Facility website.
Location	Choose from the list as appropiate for this facility:
	Arctic
	Sub-Arctic
	Antarctic
	Subantarctic
* Туре	Choose from the list as appropiate for this facility:
	🗆 Camp
	Laboratory
	Station
	Shelter
 * Current status of facility 	Choose from the list as appropiate for this facility:
	🗆 Open
	Closed
 * First opened/Opening year 	Insert the opening year of this facility.
 * Operating country 	Choose from the list as appropiate for this facility.
 * Operational period 	Choose from the list as appropiate for this facility:
	All year round
	select the appropriate months

Data sources

Fields	Field comment / proposed selections
* Contact person	
* Email	
* Date of last update	Date/Month/Year

Introduction

Fields	S	Field comment / proposed selections
* Fac	cility name and Operator	All the information inserted in the "Introduction" section, will be used to create introductive paragraphs.
* Loo	cation	Describe the location as appropriate for this facility.
	odiversity and natural vironment	Describe biodiversity and natural environment as appropriate for this facility.
* His	story and Facilities	Describe history and previous facilities, if any, previously built.
	eneral research and Itabases	Describe general research conducted as appropriate for this facility.
* Hu	uman dimension	Describe human activities as appropriate for this facility.

© EU-PolarNet Consortium

* Access	Describe how is possible to reach the facility (e.g. flight from, by land
	from, ship).

Operator / Manager

Fields	Field comment / proposed selections
* Facility operator / manager	
 Institution managing / operating the facility 	
* Type of entity	Choose from the list as appropiate for this facility. If the type of your enity is not listed, please type in "other". Government Private Other
* Contact facility	Facility contact number or email.
Website (operator)	Insert the operator website.

Partner institutions

Fields	Field comment / proposed selections
Partnership	Choose "yes" or "no" as appropriated for this facility.
Partner Institution Name	
Partner Institution Country	If yes, choose from the list as appropriate for this facility.

Location

Fields	Field comment / proposed selections
* Latitude	Deg Min Sec
* Longitude	Deg Min Sec
* Region	Choose from the list as appropriate for this facility:
	Antarctic Peninsula
	Continental Antarctica
	🗆 European Arctic
	North America Arctic
	Russian Arctic
	Sub-Antarctic Islands
Antarctic Environmental	For Antarctic facilities only:
Domain	A. Antarctic Peninsula northern geologic
	B. Antarctic Peninsula mid-northern latitudes geologic
	C. Antarctic Peninsula southern geologic
	D. East Antarctic coastal geologic
	E. Antarctic Peninsula and Alexander Island main ice fields and
	glaciers
	F. Larsen Ice Shelf
	G. Antarctic Peninsula offshore island geologic
	H. East Antarctic low latitude glacier tongues
	I. East Antarctic ice shelves
	J. Southern latitude coastal fringe ice shelves and floating glaciers
	K. Northern latitude ice shelves
	L. Continental coastal-zone ice sheet
	M. Continental mid-latitude sloping ice
	N. East Antarctic inland ice sheet
	O. West Antarctic Ice Sheet
	P. Ross and Ronne-Filchner ice shelves
	Q. East Antarctic high interior ice sheet
	R. Transantarctic Mountains geologic
	S. McMurdo – South Victoria Land geologic

© EU-PolarNet Consortium

	T Inland continental geologic
	T. Inland continental geologic
	U. North Victoria Land geologic
Antarctic Conservation	For Antarctic facilities only:
Biogeographic Zone	1 North-east Antarctic Peninsula
	2 South Orkney Islands
	3 North-west Antarctic Peninsula
	4 Central south Antarctic Peninsula
	5 Enderby Land
	6 Dronning Maud Land
	7 East Antarctica
	8 North Victoria Land
	9 South Victoria Land
	10 Transantarctic Mountains
	11 Ellsworth Mountains
	12 Marie Byrd Land
	13 Adelie Land
	14 Ellsworth Land
	15 South Antarctic Peninsula
Sub-Antarctic Islands	Choose from the list as appropriate for this facility:
Sub-Antarctic Islanus	□ Antipodes Isl.
	□ Antipodes Isi. □ Auckland Isi.
	□ Bounty Isl.
	□ Bouvet Isl.
	□ Crozet Isl.
	Heard and Mc Donald Isl.
	🗆 Kerguelen isl.
	Macquarie Isl.
	Marion and Prince Edward Isl.
	South Georgia Group
	South Sandwich Isl.
	🗆 Snares Isl.
* Altitude of facility (m)	
Min. altitude (m)	within study area
Max. altitude (m)	within study area
Distance to nearest town(km)	
Distance to nearest transport	(airstrip/helipad/dock) (km)
facility	
Distance to nearest station	
(km)	
Type of surface facility built	Choose from the list as appropriate for this facility. If the type of surface
on	is not listed, please type in "other".
	□ Ice-free ground
	□ Ice-shelf
	□ Ice-sheet
	□ Glacier
	🗆 Other

Climate

Fields	Field comment / proposed selections	
* Climate zone	Choose from the list as appropriate for this facility:	
	High-Arctic	
	Low-Arctic	
	Sub-Arctic	
	Inland Antarctica	
	Coastal Antarctica	

1	🗆 Maritime Antarctica
* Permafrost	Choose from the list as appropriate for this facility
i cimanost	
* Mean annual wind speed	
(km/h)	
Max. wind speed (km/h)	
Dominant wind direction	Choose from the list as appropriate for this facility.
Sea Ice break up	Select Months or "None"
Lake ice break up	Select Months or "None"
River ice break up	Select Months or "None"
* Snow free period	Select Months or "None"
Total annual precipitation	
(mm)	
Precipitation type	Choose from the list as appropriate for this facility. If the precipitation
	type is not listed, please type in "other":
	Snow
	🗆 Rain
	Rain and Snow
	Other
 * Period of temperature 	Date/Month/Year
measurements (start)	
* Period of temperature	Date/Month/Year
measurements (end)	
* Mean annual Temp. (°C)	
Mean Temp. Jan. (°C)	
* Mean Temp. Feb. (°C)	
Mean Temp. March (°C)	
Mean Temp. April (°C)	
Mean Temp. May (°C)	
Mean Temp. June (°C)	
* Mean Temp. July (°C)	
Mean Temp. August (°C)	
Mean Temp. Sept. (°C)	
Mean Temp. Oct. (°C)	
Mean Temp. Nov. (°C)	
Mean Temp. Dec. (°C)	
Max. Temp. (absolute) - date	Date/Month/Year
Max. Temp. (absolute) (°C)	
Min. Temp. (absolute) - date	Date/Month/Year
Min. Temp. (absolute) (°C)	

Features in the facility area

Fields	Field comment / proposed selections
* Features in the facility area	 Choose from the list as appropriate for this facility. If the type of feature is not listed or you want add other features, please type in "other": Biological features Bird colonies Blue ice Bluff Clear air zone Coast

Crevasses
🗆 Fauna
🗆 Fjord
High elevation
🗆 Hill
Ice cap or glacier
\Box Ice shelf
Ice tongue
🗆 Lake
Low artificial light pollution
□ Low humidity
□ Melt stream
Moraines
Mountains
Nunatak
Permanent snow patches
🗆 Plateau
River
Rock
🗆 Sea
🗆 Sea ice
Seal colony
□ Shoreline
 Terrestrial geothermal
□ Tree line

Main science disciplines

Fields	Field comment / proposed selections
* Main science disciplines	Choose from the list as appropriate for this facility. If a science discipline
	is not listed or you want add other disciplines, please type in "other":
	Anthropology
	Archaeology
	Astrophysics
	Atmospheric chemistry and physics
	Climate change
	Climatology
	Ecology
	Environmental sciences
	Fishery
	Geocryology
	Geodesy
	Geology
	Geomorphology
	Geophysics
	Glaciology
	🗆 Human biology
	Hydrology
	Isotopic chemistry
	🗆 Limnology
	Mapping

© EU-PolarNet Consortium

Marine biology
□ Medicine
Oceanography
Palaeoecology
Palaeolimnology
Pollution
Sedimentology
Sociology
Soil science
Terrestrial biology
Other

Infrastructure

Fields	Field comment / proposed selections
* Area under roof (m2)	
* Area Scientific laboratories	
(m2)	
* Type of scientific laboratories	Choose from the list as appropriate for this facility. If a scientific
	laboratory is not listed, please type in "other":
	Biology
	Chemistry
	Geology
	Geophysics
	□ GIS
	Scientific diving
	Other
	None
 Logistics area (m2) 	
* Number of beds	
Conference room	capacity
* Showers	Yes or No
* Laundry facilities	Yes or No
 * Hydroponics facilities 	Yes or No
* Power supply (type)	Choose from the list as appropriate for this facility:
	Fossil fuel
	Renewable
* Power supply (V)	
Power supply	hours per day

Staff capacity

Fields	Field comment / proposed selections
 Number of support staff on station (peak/summer season) 	This field does not Include scientists, researchers and tourists.
 Number of scientists on station (peak/summer season) 	
 * Number of support staff on station (off peak/winter season) 	This field does not Include scientists, researchers and tourists.
 * Number of scientists on station (off peak/winter season) 	

*	Max number of personnel at any one time (staff, scientists and other)	Total maximum number of all people that station can accommodate at any one time.
	Number of tourists (annual average)	

Scientific equipment

Fields	Field comment / proposed selections
Specific devices / Scientific	
equipment	
Scientific services possible	
Long-term	
monitoring/observations	

Medical facilities

Fields	Field comment / proposed selections
* Medical facilities	Yes / No / No data
* Area of medical facility (m2)	
* Staff with relevant training	 Choose from the list as appropriate for this facility: Medical doctor Non-medical trained person Nurse Paramedic Physician assistant None
* Staff with basic medical	Number
training or doctor (summer)	
* Staff with basic medical training or doctor (winter)	Number
Distance to hospital (km)	
Closest emergency facility	in Antarctica only (km)
Closest emergency facility * Capability	elsewhere (km)
	Choose from the list as appropriate for this facility: Basic Dental Surgery Other None
* Beds	Number
* Medical research capabilities	s Choose from the list as appropriate for this facility.
* Medical screening requirements	Choose from the list as appropriate for this facility.
* Equipment	Choose from the list as appropriate for this facility. If an equipment is not listed, please type in "other": Aeromedical equipment Altitude medicine Anaesthesia Biochemistry Blood transfusion medicine Diagnostic ultrasound Diagnostic x=ray Endoscopy Haematology

	 Hyperbaric recompression chamber Laboratory diagnostics Microbiology Ophthalmology Telemedicine Other
Compulsory safety equipment	
Recommended safety	
equipment	

Vehicles at facility

Fields	Field comment / proposed selections
Sea transportation	
Land trasportation	

Workshop facilities

Fields	Field comment / proposed selections
* Workshop facilities	Choose from the list as appropriate for this facility. If a workshop facility is not listed, please type in "other": ICTS (Staff available to assist with construction) Mechanical Metal workshop Plexiglas workshop Wood workshop
	Other

Communication

Fields	Field comment / proposed selections	
* Communications	Choose from the list as appropriate for this facility:	
	Computer	
	🗆 E-mail	
	🗆 Fax	
	🗆 Internet	
	Printer	
	Satellite phone	
	🗆 Scanner	
	Telephone	

Access

Fields	Field comment / proposed selections	
* Access	Choose from the list as appropriate for this facility:	
	🗆 Air	
	🗆 Land	
	🗆 Sea	

Aircraft landing facilities

Fields	Field comment / proposed selections
Number of airstrips	
Length (m) of longest runway	
Width (m) of longest runway	
Airstrip surface	Choose from the list as appropriate for this facility. If an airstrip surface is not listed, please type in "other":

© EU-PolarNet Consortium

	 Blue ice Grass Gravel Macadam / tarmac Sea ice Snow Uncertain Other
Description of airstrips	Free text to describe multiple airstrips.
Helipad	Yes / No / No data

Transport and freight

Fields	Field comment / proposed selections
* Transport to facility	Choose from the list as appropriate for this facility. If a means of transport
	is not listed, ease type in "other":
	□ 4WD
	🗆 Airplane
	Car
	Helicopter
	🗆 Ship
	🗆 Ski
	🗆 Skidoo
	Walking
	🗆 Other
Ship landing facilities	Choose from the list as appropriate for this facility. If a ship landing facility
	is not listed, please type in "other":
	Breakwater / Bulkhead
	Drydock
	Floating dock / Pontoon
	🗆 Ice Pier
	None
	Pier / Jetty
	🗆 Port
	Wetdock
	🗆 Other
No. of ship visits per year	
Period of ship visits / yr	Select months or "None"
No. of flight visits / yr	
Period of flight visits / yr	Choose from the list as appropriate for this facility.

Permitting issues categories

Fields	Field comment / proposed selections
Permits required for access to	
the facility	
Permits required for studies	
Contact (permit issues)	
Email contact	

Human activities

Fields	Field comment / proposed selections
Human activity	Yes / No / No data

EU_PolarNet – GA 652641

	Recreation	Choose from the list as appropriate for this facility:
		Recreational activities
		Resort / Leisure activities
	History of human presence in	
	the area	
	Production / Economical	This field is most applicable to the Arctic Stations.
	activities	
*	Long term monitoring	Yes / No / No data
*	Waste management	Yes / No / No data
*	Hazard management	Yes / No / No data
*	Fuel spill response capability	Yes / No / No data

3.2 European Polar Research Vessels database

The following structure of the Polar Research Vessels database was adopted, according to the fields already present in the EUROFLEET 2 database.

General information

Fields	Comments
Polar code Category	A, B or C
IACS Class	PC1 to PC 7
Ship Name	
Country	
Length	(m)
Built year	
Operator	
Ice Class in New Polar Code	PC1 to PC8
Operating area	
Major Refit	
Supply Station	

Technical information

Fields	Sub-field
Polar Code Category	
IACS Class	
Ship Name	
Dimensions	Length
	Draft
	GRT (Gross Register Tonnage)
People	Crew
	Scientifics+Technicians
Laboratories	Area Wetlab (m2)
	Area Drylab (m2)
Cargo	Capacity Dry Cargo Area (m3)
	Capacity cargo container (nº)
A-Frames	No. Capacity
Cranes	Number and max load (T)
Winches (Scientific, Others)	No/Type/length (m)
Moon-pool	
Telecommunication Broad-band	
Dynamic positioning system (DP)	DPS1

Scientific equipment onboard

Fields	Sub-field
Polar Code Category	
IACS Class	
Ship Name	
Acoustics	Multibeam
	Parametric

© EU-PolarNet Consortium

Geophysics	Gravimetry					
	Magnetism					
Coring	Gravity					
	Piston					
	Multi					
Seismic	Navigation					
	Streamer					
	Air Guns					
Sampling	Nets					
	Multinets					
	Dredge					
Water column	CTD					
	Radiometer					
	LADCP					
	ADCP					

4. Results

4.1 European Polar Research Facilities

4.1.1 Updated information on European Polar Research Facilities

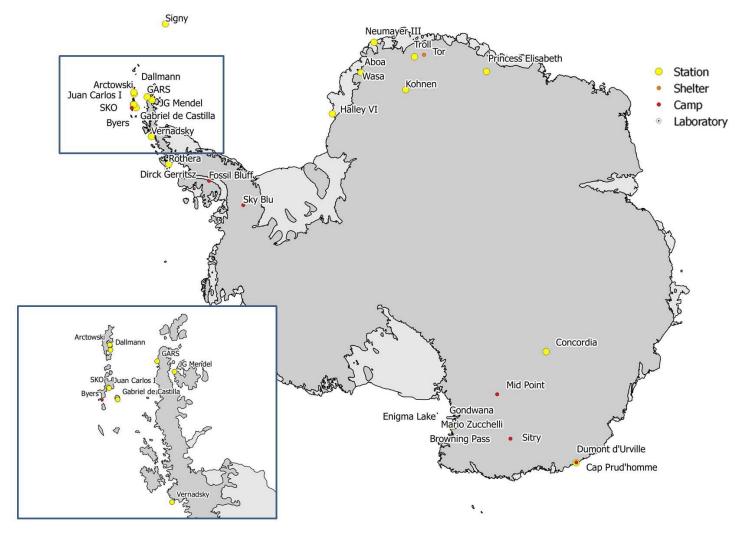
We provide in the next pages the list of all European polar facilities currently present in the database as well as the summary of some important data for each facility (all the information is available in the database).

We have identified a total of 66 European polar facilities, 34 in theAntarctic and 32 in the Arctic:

- 13 facilities in Antarctic Peninsula (Table 1, Figure 2)
 - 4 permanent stations,
 - 6 summer stations,
 - 1 summer laboratory,
 - 2 summer camps.
- **18 facilities in Continental Antarctica** (Table 2, Figure 2)
 - 5 permanent stations,
 - 6 summer stations,
 - 4 summer camps,
 - 3 summer shelters.
- 3 facilities in Sub-Antarctic islands (not comprehensive) (Table 3)
- **32 facilities in the Arctic** (Table 4, Figure 3)
 - 24 permanent stations,
 - 8 summer stations.

The stations are operated by 17 European countries: Belgium, Bulgaria, Czech Republic, Faroe Islands, Finland, France, Germany, Greenland, Iceland, Italy, Netherlands, Norway, Poland, Spain, Sweden, Ukraine, and United Kingdom. Most of these facilities are governmental or operated by Universities (only one is operated by a non-profit organization).

As illustrations, we provide on the next pages information on climatic data recorded at these facilities (Table 5), their staff and scientists accommodation capacities (Table 6) and, for the Antarctic facilities, their distribution according to the Antarctic Environmental Domains and the Antarctic Conservation Biogeographic Zones (Table 7).


Facility name	Operating country	Partner country	Туре	Operational period	Opening year	latitude	longitude (m)		website
					Anta	rctic Peninsula			
St. Kliment Ohridiski	Bulgaria		Station	Nov-Mar	1988	62° 38′ 44.30′′S	060° 21′ 91.40′′W	15	http://www.bai-bg.net/bulgarian-base.html
Johann Gregor Mendel	Czech Republic		Station	Dec-Mar	2006	63° 48′ 03.80′′S	057° 52′ 95.60′′W	10	www.sci.muni.cz/CARI/
German Antarctic Receiving Station	Germany		Station	Year-round	1991	63° 19′ 00.00′′S	057 ° 54′ 00.00′′W	17	http://www.dlr.de/gars
Dallmann	Germany	Argentina	Station	Oct-Mar	1994	62° 14′ 25.07′′S	058° 40′ 00.30′′W	10	ttp://www.awi.de/en/expedition/stations/dallman n-laboratory.html
Dirck Gerritsz Laboratory	Netherlands	United Kingdom	Laboratory	Oct-Mar	2012	67° 34′ 11.80′′S	068° 74′ 63.00′′W	16	www.nwo.nl/npp
Arctowski	Poland		Station	Year-round	1977	69° 09′ 35.76′′S	058° 28′ 08.57′′W	2	http://www.arctowski.pl/
International Field Camp Peninsula Byers	Spain		Camp	Dec-Feb	2001	62° 39′ 49.70′′S	061° 05′ 59.80′′W	10	
Gabriel de Castilla	Spain		Station	Nov-Mar	1990	62° 58′ 37.28′′S	060° 40′ 30.09′′W		http://www.ejercito.mde.es/unidades/Antartica/an tartica/Localizacion/index.html
Juan Carlos I	Spain		Station	Nov-Mar	1988	62° 39′ 80.50′′S	060° 23′ 28.90′′W	12	http://www.csic.es/base-antartica-juan-carlos-i
Vernadsky	Ukraine		Station	Year-round	1996	65° 14′ 74.50′′S	064° 15′ 44.90′′W	7	
Fossil Bluff	United Kingdom		Camp	Oct-Mar	1961	71° 19′ 24.28′′S	068° 17′ 20.63′′W	92	https://www.bas.ac.uk/polar-operations/life-in-the- polar-regions/virtual-tours/virtual-trip-to-
Rothera research station	United Kingdom		Station	Year-round	1975	67° 34′ 00.00′′S	068° 07′ 59.00′′W	16	https://www.bas.ac.uk/polar-operations/sites-and-facilities/facility/rothera/
Signy	United Kingdom		Station	Oct-Mar	1947	60° 42′ 29.83′′S	045° 35′ 43.40′′W	5	https://www.bas.ac.uk/polar-operations/sites-and- facilities/facility/signy/

© EU-PolarNet Consortium

Table 2 – European facilities in continental Antarctica

Facility name	Operating country	Partner country	Туре	Operational period	Opening year	latitude	longitude	altitude (m)	website
					Contir	ental Antarctica			
Princess Elisabeth Antarctica	Belgium		Station	Nov-Feb	2009	71° 56′ 99.10′′S	023° 20′ 81.30′′E	1382	www.bpolar.be
Aboa	Finland		Station	Dec-Feb	1989	73° 03′ 00.00′′S	013° 25′ 00.00′′W	440	http://www.antarctica.fi/aboa-research-station
Cap Prud'homme	France	Italy	Camp	Nov-Feb	1994	66° 41′ 25.60′′S	139° 54′ 43.00′′E	10	http://www.institut-polaire.fr/ipev-en/support-for- science/antarctica/dumont-durville/
Concordia	France	Italy	Station	Year-round	2005	75° 06′ 06.00′′S	123° 19′ 95.00′′E	3220	http://www.institut-polaire.fr/ipev- en/infrastructures-2/stations/concordia/
Dumont d'Urville	France		Station	Year-round	1956	66° 39′ 77.00′′S	140° 0 ′ 08.00′′E	42	http://www.institut-polaire.fr/ipev-en/support-for- science/antarctica/dumont-durville/
Neumayer III	Germany		Station	Year-round	1981	70° 41′ 00.00′′S	008° 16′ 00.00′′W	43	http://www.awi.de/en/expedition/stations/neuma yer-station-iii.html
Gondwana	Germany		Station	Oct-Mar	1983	74° 38′ 13.00′′S	164° 13′ 27.00′′E	20	
Kohnen	Germany		Station	Oct-Mar	2001	75° 00′ 06.00′′S	000° 04′ 04.00′′E	2892	http://www.awi.de/en/expedition/stations/kohnen- station.html
Mid Point	Italy		Camp	Nov-Feb	1998	75° 32′ 50.20′′S	145° 49′ 22.00′′E	2520	
Sitry	Italy		Camp	Nov-Feb	2000	71° 39′ 10.40′′S	149° 39′ 28.00′′E	1600	
Browning Pass	Italy		Shelter	Jan-Feb	1997	74° 37′ 37.40′′S	163° 54′ 91.00′′E	63	
Enigma Lake	Italy		Shelter	Dec-Feb	2005	74° 43′ 15.00′′S	164° 16′ 63.00′′E	250	
Stazione Mario Zucchelli	Italy		Station	Oct-Feb	1986	74° 41′ 42.00′′S	164° 7 ′ 23.00′′E	15	
Tor	Norway		Shelter	Nov-Feb	1993	71° 53′ 37.10′′S	005° 9 ′ 59.40′′E	1625	http://www.npolar.no/en/about-us/stations- vessels/tor/
Troll	Norway		Station	Year-round	1990	72° 07′ 17.00′′S	002° 31′ 98.40′′E	1275	http://www.npolar.no/en/about-us/stations- vessels/troll/
Wasa	Sweden		Station	Dec-Feb	1989	73° 03′ 00.00′′S	013° 25′ 00.00′′W	440	
Sky Blu	United Kingdom		Camp	Oct-Mar	1997	74° 51′ 38.10′′S	071° 35′ 11.20′′W	1400	

© EU-PolarNet Consortium

Figure 2 – Map of the European Antarctic facilities as listed in the Eu-PolarNet database

© EU-PolarNet Consortium

Table 3 – European facilities in the Sub-Antarctic islands (not comprehensive)

Facility name	Operating country	Partner country	Туре	Operational period	Opening year	latitude	longitude	altitude (m)	website
					Sub-A	ntarctic Islands			
Alfred-Faure	France		Station	Year-round	1962	46° 25′ 48.00′′S	051° 51′ 40.00′′E	146	http://www.institut-polaire.fr
Martin-de-Viviès	France		Station	Year-round	1950	37° 47′ 53.00′′S	077° 34′ 18.00′′E	27	http://www.institut-polaire.fr
Port aux Français	France		Station	Year-round	1949	49° 21′ 00.00′′S	070° 13′ 10.00′′E	20	http://www.institut-polaire.fr

© EU-PolarNet Consortium

Table 4 – European facilities in the Arctic

Facility name	Operating country	Partner country	Туре	Operational period	Opening year	latitude	longitude	altitude (m)	website
					Arctic 1/2				
Czech Arctic Research Station of Josef	Czech Republic		Station	Mar-Oct	2007	78° 13′ 23.00′′N	015° 39′ 32.00′′E	2	http://polar.prf.jcu.cz/station.htm
Faroe Islands Nature Investigation	Faroe Islands		Station	Year-round	1999	62° 04′ 00.00′′N	006° 58' 00.00''W	725	www.jf.fo
Kilpisjärvi Biological Station	Finland		Station	Year-round	1964	69° 03′ 00.00′′N	020° 50′ 00.00′′E	480	www.helsinki.fi/kilpis
Kevo Subarctic Research Station	Finland		Station	Year-round	1958	69° 45′ 00.00′′N	027° 01′ 00.00′′E	80	www.utu.fi/en/units/cerut/kevo
Värriö Subarctic Research Station	Finland		Station	Year-round	1967	67° 44′ 00.00′′N	029° 36′ 00.00′′E	388	www.atm.helsinki.fi/varrio/fi
Pallas Research Station	Finland		Station	Year-round	1991	67° 58′ 00.00′′N	024° 07′ 00.00′′E	565	www.fmi.fi / http://fmigaw.fmi.fi
Sodankylä Research Station	Finland		Station	Year-round	1949	67° 22′ 00.00′′N	026° 39′ 00.00′′E	179	http://fmiarc.fmi.fi
Kolari Research Unit	Finland		Station	Year-round	1964	67° 21′ 00.00′′N	023° 49′ 00.00′′E	221	www.luke.fi/en
Oulanka Research Station	Finland		Station	Year-round	1966	66° 22′ 00.00′′N	029° 19′ 00.00′′E	165	http://www.oulu.fi/oulankaresearchstation/
Kainuu Fisheries Research Station	Finland		Station	Year-round	1935	64° 24′ 00.00′′N	027° 30′ 00.00′′E	135	www.kfrs.fi
Hyytiälä Forest Research Station	Finland		Station	Year-round	1995	61° 51′ 00.00′′N	024° 17′ 00.00′′E	180	www.atm.helsinki.fi/SMEAR/index.php/smear-ii
AWIPEV	France	Germany	Station	Year-round	2003	78° 55′ 24.00′′N	011°55′15.00′′E	20	http://www.awipev.eu/
Sudurnes Science and Learning Center	Iceland		Station	Year-round	2012	64° 02′ 00.00′′N	022° 42′ 00.00′′W	3	www.thekkingarsetur.is
Litla-Skard	Iceland		Station	Year-round	1996	64° 43′ 00.00′′N	021° 37′ 00.00′′W	115	www.ust.is/litla_skard
Rif Field Station	Iceland		Station	Year-round	2014	66° 27′ 00.00′′N	015° 57′ 00.00′′W	1	www.rifresearch.is
CNR Arctic Station Dirigibile Italia	Italy		Station	Mar-Oct	1997	78° 55′ 00.00′′N	011° 56′ 00.00′′E	10	www.dta.cnr.it

© EU-PolarNet Consortium

Facility name	Operating country	Partner country	Туре	Operational period	Opening year	latitude	longitude	altitude (m)	website
						Arctic 2/2			
Netherlands Arctic Station	Netherlands		Station	Jun-Aug	1995	78° 55′ 00.00′′N	011° 56′ 00.00′′E	10	www.arcticstation.nl
Sverdrup Research Station	Norway		Station	Year-round	1968	78° 55′ 00.00′′N	011° 56′ 00.00′′E	5	http://sverdrup.npolar.no
Finse Alpine Research Centre	Norway		Station	Year-round	1965	60° 36′ 00.00′′N	007° 30′ 00.00′′E	1215	www.uio.no
NIBIO Svanhovd Research Station	Norway		Station	Year-round	1934	69° 27′ 00.00′′N	030° 03′ 00.00′′E	35	www.nibio.no
Polish Polar Station, Hornsund	Poland		Station	Year-round	1957	77° 00′ 00.00′′N	015° 33′ 00.00′′E	9	www.hornsund.igf.edu.pl; www.hornsund.pl
Svartberget Research Station	Sweden		Station	Year-round	1923	64° 14′ 00.00′′N	019° 45′ 00.00′′E	230	www.slu.se
Abisko Scientific Research Station	Sweden		Station	Year-round	1911	68° 21′ 00.00′′N	018° 49′ 00.00′′E	385	www.polar.se/abisko
Tarfala Research Station	Sweden		Station	Mar-Sep	1946	67° 55′ 00.00′′N	018° 35′ 00.00′′E	1130	
UK Arctic Research Station	United Kingdom		Shelter	Mar-Sep	1991	78° 55′ 00.′′N	011° 56′ 00.00′′E	0	www.arctic.ac.uk
Arctic Station	Greenland		Station	Year-round	1906	69° 15′ 00.00′′N	053° 34′ 00.00′′W	20	http://arktiskstation.ku.dk/english
Greenland Institute of Natural Resources	Greenland		Station	Year-round	1995	64° 11′ 00.00′′N	051° 41′ 00.00′′W	50	www.natur.gl, www.g-e-m.dk
Villum Research Station	Greenland		Station	Year-round	1990	81° 36′ 00.00′′N	016° 39′ 00.00′′W	30	www.villumresearchstation.dk
Summit Station	Greenland	United States	Station	Year-round	1989	72° 34′ 00.00′′N	038 ° 27′ 00.00′′W	3210	www.geosummit.org, www.summitcamp.org
Sermilik Research Station	Greenland		Station	May-Sep	1970	65° 40′ 51.12′′N	037° 54′ 57.87′′W	15	www.ign.ku.dk/english/about/field- stations/sermilik-station/
EGRIP Field Station	Greenland	Germany	Station	May-Aug	2015	75° 38′ 00.00′′N	036° 00′ 00.00′′W	2708	www.iceandclimate.nbi.ku.dk
Zackenberg Research Station	Greenland		Station	Mar-Oct	1995	74° 28′ 00.00′′N	020° 34′ 00.00′′W	38	www.zackenberg.dk, www.g-e-m.dk

© EU-PolarNet Consortium

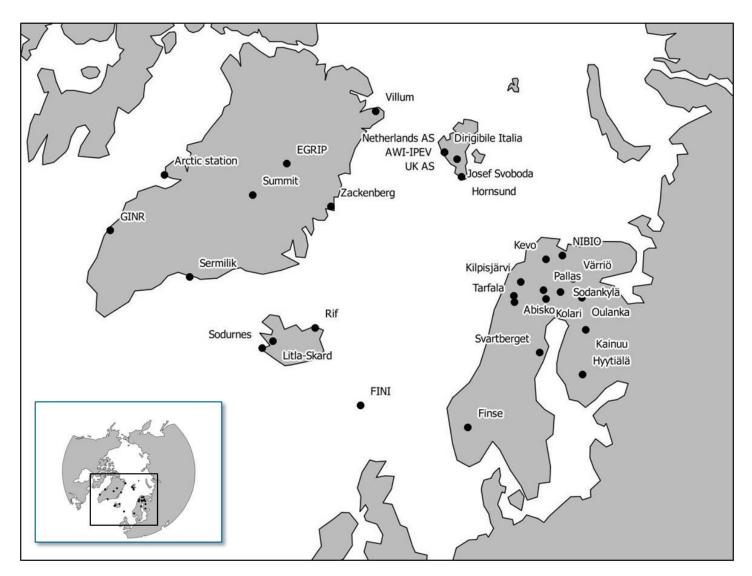


Figure 3 – Map of the European Arctic stations as listed in the EU-PolarNet database

© EU-PolarNet Consortium

Table 5 – Climatic features at the European Polar facilities

Facility name	Operating country	Climate zone	Permafrost	snow free period	Mean annual wind speed (m/s)	precipitation type	mean annual temperature (°C)	Mean T (°C) February	Mean T July (°C)
		EUROPEAN A	NTARCTIC / SUB	ANTARCTIC FAC					
Alfred-Faure	France	Sub-Antarctic	None	all year round	32	Snow and Rain	5.5	8.4	3.7
Martin-de-Viviès	France	Sub-Antarctic	None	all year round	24.9	Rain	14	17.4	11.4
Port aux Français	France	Sub-Antarctic	None	all year round	34.7	Snow and Rain	4.9	8.1	2.1
Arctowski	Poland	Maritime Antarct.	None	Dec-Feb	24	Snow and Rain	-1.6	2.3	-6.6
Gabriel de Castilla	Spain	Maritime Antarct.	Discontinuous	Jan-Mar	24	Snow and Rain	-0.7	2.6	-6.9
Intern. Field Camp Penins. Byers	Spain	Maritime Antarct.	Sporadic	Jan-Apr	26	Snow and Rain	-2.5	1.2	-6.4
Juan Carlos I	Spain	Maritime Antarct.	Sporadic	Feb	14	Snow and Rain	-1.2	2.2	-5.1
Signy	United Kingdom	Maritime Antarct.	Discontinuous	Feb-Apr		Snow and Rain	-2.2	1.4	-7.7
St. Kliment Ohridiski	Bulgaria	Maritime Antarct. Maritime Antarct.	Continuous	None	15.4	Snow and Rain	2.0	0.0	0.7
Vernadsky	Ukraine		Continuous	Feb-Mar	15.4	Snow and Rain	3.8	0.6	-8.7
Browning Pass Cap Prud'homme	Italy France / Italy	Coastal Antarctica Coastal Antarctica	None None	None Jan-Feb	18 43	Snow Snow	-15 -12	-11 -6	-26 -18
Dallmann	Germany / Arg.	Coastal Antarctica	Continuous	Dec-Feb	36	51101	-2.4	2	-6
Dirck Gerritsz Laboratory	Netherl. / UK	Coastal Antarctica	Continuous	Deeres	50		-5	-0.1	-11.6
Dumont d'Urville	France	Coastal Antarctica	None	None	33.2	Snow	-10.7	-4	-16.7
Enigma Lake	Italy	Coastal Antarctica	Continuous	None	34		-15	-9	-23
GARS O'Higgins	Germany	Coastal Antarctica	None	Dec-Feb	35		-3.9	0	-9
Gondwana	Germany	Coastal Antarctica	Continuous	Jan-Feb	23.8		-14	-6.3	-19.8
Johann Gregor Mendel	Czech Republic	Coastal Antarctica	Continuous	Dec-Mar	6	Snow	-6.8	-0.1	-14.1
Neumayer III	Germany	Coastal Antarctica	None	None	32.4		-16	-8.1	-24.9
Rothera research station	United Kingdom	Coastal Antarctica	Continuous				-3.7	-0.6	-6.7
Stazione Mario Zucchelli	Italy	Coastal Antarctica	Continuous	all year round	22	Snow	-14	-7	-22
Aboa	Finland	Inland Antarctica	Continuous			Snow			
Concordia	France / Italy	Inland Antarctica	None	None	10.8	Snow	-52.1	-43.7	-64.2
Fossil Bluff	United Kingdom	Inland Antarctica	Continuous			Snow			
Halley VI	United Kingdom	Inland Antarctica		None			-20	-13	-31
Kohnen	Germany	Inland Antarctica	None	None	16.2	-	-42.2	-32.2	-52.3
Mid Point	Italy	Inland Antarctica	None	None	21	Snow	-42	-37	-56
Princess Elisabeth Antarctica	Belgium	Inland Antarctica	Continuous	None	7	Snow	-18	-12.3	-24.9 -47
Sitry	Italy	Inland Antarctica	None	None	21	Snow	-32	-30	-47
Sky Blu Tor	United Kingdom Norway	Inland Antarctica Inland Antarctica	Continuous Continuous	None None		Snow Snow			
Troll	Norway	Inland Antarctica	Continuous	None	4	Snow	-18	-10.9	-24.8
Wasa	Sweden	Inland Antarctica	Continuous	Hone		Snow	10	10.5	24.0
	oweden		ROPEAN ARCTIC	FACILITIES	1	011011	1	I	
Abisko	Sweden	Sub-Arctic	Discontinuous		3.9	Snow and Rain	-0.6	-11	11
Faroe Islands Nature Invest.	Faroe Islands	Sub-Arctic	None	Jul-Sep	21	Snow and Rain	1.71	-2	8
Finse Alpine Research Centre	Norway	Sub-Arctic	Sporadic	Jul-Sep	19.3	Snow and Rain	-1.3	-9	8.6
Kainuu Fisheries Research St.	Finland	Sub-Arctic	None	Jun-Oct	10	Snow and Rain	1.8	-10.5	15.3
Kevo Subarctic Research St.	Finland	Sub-Arctic	Sporadic	Jun-Sep	10.1	Snow and Rain	-1.4	-13.5	12.9
Kilpisjärvi Biological Station	Finland	Sub-Arctic	Sporadic	Jun-Sep	3.6	Snow and Rain	-2.23	-13	11
Kolari Research Unit	Finland	Sub-Arctic	None	Jun-Oct	7	Other	0.8	-18.4	15.4
NIBIO Svanhovd Research Stat.	Norway	Sub-Arctic	Sporadic	May-Oct	1.5	Snow and Rain	-0.6	-11.6	13.7
Oulanka Research Station	Finland	Sub-Arctic	None	May-Sep		Snow and Rain	-0.4	-13.6	14.9
Pallas Research Station	Finland	Sub-Arctic	None	Jun-Oct	25	Snow and Rain	-0.6	-11.2	12.3
Rif Field Station	Iceland	Sub-Arctic	N	May-Oct	23	Snow and Rain	3.4	-0.7	9.1
Sodankylä Research Station	Finland	Sub-Arctic	None	Jun-Sep	9.7	Snow and Rain	-0.4	-12.7	14.5
Sudurnes Sci. and Learning Cent.	Iceland	Sub-Arctic	None	Apr-Sep	24	Snow and Rain	4.7	0.7	10.6
Svartberget Research Station Tarfala Research Station	Sweden Sweden	Sub-Arctic Sub-Arctic	None Discontinuous	May-Oct Jul-Sep	11	Snow and Rain Snow and Rain	1.8 -3.3	-8.9 -10.7	14.6 8.5
Värriö Subarctic Research St.	Finland	Sub-Arctic	None	Jun-Sep Jun-Aug	31	Show and Rain	-3.3	-10.7	12.1
Greenland Inst. Nat. Resources	Greenland	Low-Arctic	Sporadic	May-Oct	21	Snow and Rain	0.3	-7.6	10.8
	Finland	Low-Arctic	None	Apr-Nov	10	Snow and Rain	3.5	-7.7	10.8
Litla-Skard	Iceland	Low-Arctic	None	May-Oct	15	Snow and Rain	3.1	-1.8	10.8
Sermilik Research Station	Greenland	Low-Arctic	Discontinuous	Jul-Aug		Snow and Rain	-1.7		6.4
Arctic Station	Greenland	High-Arctic	Continuous		15	Snow and Rain	-3.2	-11.6	7.6
AWIPEV	France	High-Arctic	Continuous	Jun-Sep	14.4	Snow and Rain	-3.3	-9.3	6.1
CNR Dirigibile Italia	Italy	High-Arctic	Continuous	Jun-Oct	16	Snow and Rain	-6.3	-14.6	4.7
EGRIP Field Station	Greenland/Germ.	High-Arctic	Continuous	None	21.6	Snow	-29	-50	-10
Josef Svoboda	Czech Republic	High-Arctic	Continuous	Jun-Sep	4	Snow and Rain	-6	-7	8
Netherlands Arctic Station	Netherlands	High-Arctic	Continuous	Jun-Oct	4	Snow and Rain	-6	-14.6	4.9
Polish Polar St. Hornsund	Poland	High-Arctic	Continuous	Jul-Aug	6	Snow and Rain	-4	-10	4.5
Summit Station	Greenland / USA	High-Arctic	Continuous		14.8	Snow	-31	-42	-13
Sverdrup Research Station	Norway	High-Arctic	Continuous	Jul		Snow and Rain	-6.3	-14.6	4.9
UK Arctic Research Station	United Kingdom	High-Arctic	Continuous	Jun-Aug		Snow and Rain	-6	-14.6	4.9
Villum Research Station	Greenland	High-Arctic	Discontinuous	Jul-Aug	14	Snow	-16.9	-30.9	3.4
Zackenberg Research St.	Greenland	High-Arctic	Continuous	Jun-Aug	10	Snow and Rain	-9.2	-19.4	6.1

© EU-PolarNet Consortium

Table 6 – Staff and scientists accommodation capacities at the European Polar facilities

						Tvr	ne of	fscie	entif	ic la	hor	ato	ries
Facility name	Operating country	Number of staff on station (peak/summer season)	Number of staff on station (off peak/winter season)	Max number of personnel at any one time (staff, scientists, other)	Area Scientific laboratories (m2)	Biology	Chemistry	Geology	Geophysics	GIS	Diving	Other	None
		ANTARCTIC / SUB-	ANTARCTIC EURO	PEAN FACILITIES		_			•			<u> </u>	
Aboa	Finland		0	17									
Alfred-Faure	France	17	16	45	612	х			х				
Arctowski	Poland	14	8	40	200	х	х		х				
Browning Pass	Italy	0	0	0	0								х
Cap Prud'homme	France / Italy	22	0	30	20								х
Concordia	France / Italy	35	8	80	748		х		х			х	
Dallmann	Germ. / Argent.	2	2	16	118	х	х				х		
Dirck Gerritsz Laboratory	Netherl./UK			10		х	х						
Dumont d'Urville	France	44	14	90	872	х			х		х		
Enigma Lake	Italy	0	0	0	0								х
Fossil Bluff	United Kingdom	2	0	6									х
Gabriel de Castilla	Spain	13	0	36	142	х	х				х		
GARS - O'Higgins	Germany	10	4	10	50							х	
Gondwana	Germany	20	0	33	44								
Halley VI	United Kingdom	52	13	70	200		х		х				
Int. Field Camp Peninsula Byers	Spain	2	0	12	16								х
Johann Gregor Mendel	Czech Republic	4	0	20	33	х	х	х				х	
Juan Carlos I	Spain	16	0	50	220	х	х	х	х			х	
Kohnen	Germany	4	0	28									х
Mario Zucchelli	Italy	80	0	120	2400	х	х	х	х		х		
Martin-de-Viviès	France	21	13	55	341	х	х		х				
Mid Point	Italy	0	0	0									х
Neumayer III	Germany	20	5	60	410		х		х			х	
Port aux Français	France	45	34	125	952	х	х	х	х			х	
Princess Elisabeth	Belgium	12	8	40	50				х			х	
Rothera	United Kingdom	120	22	136	450	х	х				х		
Signy	United Kingdom	8	0	8		х							
Sitry	Italy	0	0	0	0								х
Sky Blu	United Kingdom	3	0	6	0								х
St. Kliment Ohridiski	Bulgaria	6	0	22	20	х		х					
Tor	Norway	2	0	7	2	х							
Troll	Norway	35	6	70	0								х
Vernadsky	Ukraine	10	5	24	180	х			х		х		
Wasa	Sweden		0	20									
Alaisha Caisastifia Daga Ch	Currenter		EUROPEAN FACI		600								
Abisko Scientific Res. St. Arctic Station	Sweden Greenland	14 3	10 3	90 26	600 225								
	France	3	3										
AWIPEV				30	610	х	x	х	х				
CNR Arctic St. Dirigibile Italia EGRIP Field Station	Italy	1	0	7	160	х	x						
	Greenl./Germ.	5	0	30	350							х	
Faroe Islands Nature Invest.	Faroe Islands	1	1	16	30			x		х			
Finse Alpine Research Centre	Norway	2 60	0 60	54	70 250	x	х	х					
Greenland Inst. Nat. Resources	Greenland			85		х				х			
Hyytiälä Forest Res. St. (SMEAR II)		25	20	200	274	х	x	х	х				
Josef Svoboda	Czech Rep. Finland	2	2	12	30	х					х		
Kainuu Fisheries Res. St. Kevo Subarctic Research Station	Finland	10	8	14	402	х							
		12	5	80	750	x			х				
Kilpisjärvi Biological Station	Finland	10	8	8	150	х							
Kolari Research Unit	Finland			10	36								
Litla-Skard	Iceland Netherlands	1 1	1	6	0								х
Netherlands Arctic Station			0	7	16	х							
NIBIO Svanhovd Res. St.	Norway	25	25	80	200		х						
Oulanka Research Station	Finland	8	0	15	95	х	х				х		
Pallas Research Station	Finland	0	0	20	0								
Polish Polar Station, Hornsund	Poland	16		20	120	х	x		х				
Rif Field Station	Iceland	1	1	8	15								
Sermilik Research Station	Greenland Finland	2	0	3	250								
Sodankylä Research Station		30	20	60	250							х	
Sudurnes Sci. and Learning Center		10	8	24	320	х							
Summit Station	Greenland / USA		5	50	112		x			x			
Svartberget Research Station	Sweden	15		20	35	х	x			х		x	
Sverdrup Research Station	Norway	5	4	30	40	x			х		x	х	
Tarfala Research Station	Sweden	10	6	40	40	x	x						
UK Arctic Research Station	United Kingdom	1	0	15	77	х							
Värriö Subarctic Res. St.	Finland Greenland	2 2	2	50 24	15			x					
												х	
Villum Research Station Zackenberg Research Station	Greenland	5	0	31	220 90	х	x	^	^			x	

© EU-PolarNet Consortium

Table 7 – Distribution of the Antarctic European facilities according to the Antarctic Environmental Domains and the Antarctic Conservation Biogeographic Zones

Facility name	Operating country	Antarctic Environmental Domain	Antarctic Conservation Biogeographic Zone
Aboa	Finland	F. Larsen Ice Shelf	6 Dronning Maud Land
Arctowski	Poland	A. Antarctic Peninsula northern geologic	3 North-west Antarctic Peninsula
Browning Pass	Italy	U. North Victoria Land geologic	8 North Victoria Land
Cap Prud'homme	France / Italy	L. Continental coastal-zone ice sheet	13 Adelie Land
Concordia	France / Italy	Q. East Antarctic high interior ice sheet	
Dallmann	Germ. / Argent.	A. Antarctic Peninsula northern geologic	1 North-east Antarctic Peninsula
Dirck Gerritsz Laboratory	Netherl./UK	G. Antarctic Peninsula offshore island geologic	4 Central South Antarctic Peninsula
Dumont d'Urville	France	L. Continental coastal-zone ice sheet	13 Adelie Land
Enigma Lake	Italy	U. North Victoria Land geologic	8 North Victoria Land
Fossil Bluff	United Kingdom	F. Larsen Ice Shelf	4 Central south Antarctic Peninsula
Gabriel de Castilla	Spain	G. Antarctic Peninsula offshore island geologic	3 North-west Antarctic Peninsula
GARS - O'Higgins	Germany	A. Antarctic Peninsula northern geologic	3 North-west Antarctic Peninsula
Gondwana	Germany	U. North Victoria Land geologic	8 North Victoria Land
Halley VI	United Kingdom	I. East Antarctic ice shelves	6 Dronning Maud Land
Int. Field Camp Peninsula Byers	Spain	G. Antarctic Peninsula offshore island geologic	3 North-west Antarctic Peninsula
Johann Gregor Mendel	Czech Republic	A. Antarctic Peninsula northern geologic	1 North-east Antarctic Peninsula
Juan Carlos I	Spain	G. Antarctic Peninsula offshore island geologic	3 North-west Antarctic Peninsula
Kohnen	Germany	N. East Antarctic inland ice sheet	6 Dronning Maud Land
Mario Zucchelli	Italy	U. North Victoria Land geologic	8 North Victoria Land
Mid Point	Italy	Q. East Antarctic high interior ice sheet	7 East Antarctica
Neumayer III	Germany	I. East Antarctic ice shelves	6 Dronning Maud Land
Princess Elisabeth	Belgium	N. East Antarctic inland ice sheet	6 Dronning Maud Land
Rothera	United Kingdom	G. Antarctic Peninsula offshore island geologic	4 Central South Antarctic Peninsula
Signy	United Kingdom	G. Antarctic Peninsula offshore island geologic	2 South Orkney Islands
Sitry	Italy	Q. East Antarctic high interior ice sheet	7 East Antarctica
Sky Blu	United Kingdom	C. Antarctic Peninsula southern geologic	4 Central South Antarctic Peninsula
St. Kliment Ohridiski	Bulgaria	G. Antarctic Peninsula offshore island geologic	3 North-west Antarctic Peninsula
Tor	Norway	Q. East Antarctic high interior ice sheet	6 Dronning Maud Land
Troll	Norway	N. East Antarctic inland ice sheet	6 Dronning Maud Land
Vernadsky	Ukraine	G. Antarctic Peninsula offshore island geologic	3 North-west Antarctic Peninsula
Wasa	Sweden	F. Larsen Ice Shelf	6 Dronning Maud Land

4.1.2 Example of comprehensive information

In this section, we provide two examples of the full information collected for a European polar facility and currently available in the database: one station in Antarctica (Concordia Station), and one station in the Arctic (Abisko Station).

Example of an Antarctic European Station: the French-Italian Concordia Station

Background

*	Station Code	CO1102
*	Facility Name	Concordia
	Website	http://www.institut-
		polaire.fr/
	Location	Antarctic
*	Туре	Station
*	Current status of	Open
	facility	
*	Opening year	2005
*	Operating country	France / Italy
*	Operational period	All year round

Data sources

*	Contact person	Yves Frenot
*	Email	yfrenot@ipev.fr
*	Date of last update	02/02/2016

Introduction

*	Facility name and Operator	Concordia station is jointly funded, staffed and operated by Italy (Programma Nazionale di Ricerche in Antartide - PNRA) and France (French Polar Institute Paul-Emile Victor - IPEV)
*		Concordia station is located at Dôme C, on the high East Antarctic plateau. The site is one of the coldest and among the most remote places on Earth. Among the permanent stations in Antarctica, only 3 are located inland the continent (Amundsen-Scott, Vostok and Concordia). The closest stations are Dumont d'Urville and Mario Zucchelli.
*	Biodiversity and natural environment	Dome C is 1 100 km from the coast at a height of 3 233m a.s.l., surrounded by thousands of kilometers of solid ice. Temperatures hardly rise above -25°C in summer and can fall below -80°C in winter with record of -84.6°C reached in 2010. As a consequence, there is no fauna and no flora.
*	History and Facilities	The idea of constructing a European permanent research station in the heart of Antarctica, with an environment particularly hostile for humans, sprang up when the site at Dome C was revealed to be especially favourable for deep ice coring and astronomy. This scientific challenge is accompanied by another, parallel adventure: the design and construction of a modern station, capable of yielding new scientific knowledge concerning not only our 6th continent, but also concerning the whole our planet and beyond, the Universe. IPEV and PNRA have therefore pooled their skills and know-how, resources and combined operations to develop this new station between 1999 and 2005. Concordia has been continuously occupied since that time.
*	General research and databases	The research projects implemented at Concordia are linked to many subjects involving societal concerns, such as climate change, the role of greenhouse gases or aerosols in past and present trends or the hole in the ozone layer. Beside the EPICA ice-core, which was completed in December 2004 and extended the record of climate variability to around 800 000 years BP, Concordia remains an active site for glaciology. Dome C also offers an

© EU-PolarNet Consortium

		exceptional environment for astronomical observations and provides good conditions for calibration and validation of sensors embarked on polar orbit satellites. Observatories in
		seismology, geomagnetism, or Earth-Sun interactions are present. Concordia station itself
		is also considered as an excellent Earth-based analogue for orbital space stations or Mars-
		bound vessels and projects in collaboration with ESA are implemented.
*	Human	The station is suitable for 14 persons winter residents to live in, completely isolated from
	dimension	the rest of the world for 9 months in the year. Up to 70 people can work at the station in
		summer, using the nearby "summer camp".
*	Access	Resupply of the station is ensured in summer by the traverse from Dumont d'Urville
		whereas personnel are brought over by air, from the Italian base Mario Zucchelli or from
		Dumont d'Urville. The R/Vs Italica and Astrolabe also form part of the supply chain from
		Europe to Australia/New Zealand.

Operator / Manager

*	Facility operator / manager	Institut Polaire Francais (IPEV)
*	Type of entity	Government
*	Contact facility	stationleader@concordiastation.aq
	Website (operator)	http://www.institut-polaire.fr/

Partner institutions

Partnership	Yes
Partner Institution Name	ENEA / PNRA
Partner Institution Country	Italy

Location

_		
*	Latitude	75° 06′ 06.00′′S
*	Longitude	123° 19′ 95.00′′
*	Region	Continental Antarctica
	Antarctic Environmental	Q. East Antarctic high
	Domain	interior ice sheet
	Antarctic Conservation	None
	Biogeographic Zone	
*	Altitude of facility	3220 m
	Distance to nearest transport	0 km
	facility	
	Distance to nearest station	1100 km
	Type of surface facility built	Glacier
	on	

Features in the facility area

 Features in the facility area 	 Clear air zone Ice cap or glacier Low artificial light pollution Low humidity Plateau
	 Sustrugui

Main science disciplines

*	Main science disciplines	Astrophysics, Atmospheric chem.and
		physics, Environ. sci., Geophysics,
		Glaciology, Human biology, Medicine,

© EU-PolarNet Consortium

Microbiol., Astonomy, Earth Observ.,
Engineering, Paleoclimatology

Climate

*	Climate zone	Inland Antarctica
*	Permafrost	None
*	Mean annual wind speed	10.8 km/h
	Max. wind speed	114.8 km/h
	Dominant wind direction	South
*	Snow free period	None
	Precipitation type	Snow
*	Period of temperature	27/01/2005
	measurements (start)	
*	Period of temperature	29/01/2016
	measurements (end)	
*	Mean annual Temp.	-52.1 °C
	Mean Temp. Jan.	-31.5 °C
*	Mean Temp. Feb.	-43.7 °C

	Mean Temp. March	-55.0 °C
	Mean Temp. April	-62.1 °C
	Mean Temp. May	-62.2 °C
	Mean Temp. June	-63.2 °C
*	Mean Temp. July	-64.2 °C
	Mean Temp. August	-63.1 °C
	Mean Temp. Sept.	-61.0 °C
	Mean Temp. Oct.	-54.6 °C
	Mean Temp. Nov.	-41.0 °C
	Mean Temp. Dec.	-30.8 °C
	Max. Temp. (absolute) - date	02/01/2014
	Max. Temp. (absolute)	-14.9 °C
	Min. Temp. (absolute) - date	13/08/2010
	Min. Temp. (absolute)	-84.7 °C

Infrastructure

-		
*	Area under roof	3605 m ²
*	Area Scientific laboratories	748 m²
*	Type of scientific laboratories	Chemistry, Geophysics,
		Astronomy
*	Logistics area	2856 m²
*	Number of beds	80
*	Showers	Yes
*	Laundry facilities	Yes
*	Hydroponics facilities	No
*	Power supply (type)	Fossil fuel
*	Power supply	230 V
	Power supply	24 hours per day

Staff capacity

*	Number of support staff on station (peak/summer season)	35
*	Number of scientists on station (peak/summer season)	35
*	Number of support staff on station (off peak/winter season)	8
*	Number of scientists on station (off peak/winter season)	5
*	Max number of personnel at any one time (staff, scientists and other)	80
	Number of tourists (annual average)	0

Scientific equipment

Specific devices / Scientific equipment	no basic scientific equipment. Each project should bring its own necessary scientific equipment.
Scientific services possible	A scientific engineer (electronician) is appointed in winter for monitoring and maintenance of automated programs.
Long-term monitoring/observations	Earth magnetism (INTERMAGNET Network), Seismology (GEOSCOPE Network), Stratospheric ozone, SuperDARN (Super Dual Auroral Radar Network), Glacier mass balance, Baseline Surface Radiation Network (BSRN), meteorology (incl. Radio-sounding)

Medical facilities

* Medical facilities	Yes
* Area of medical facility	120 m ²
* Staff with relevant training	Medical doctor
* Staff with basic medical training or	2
doctor (summer)	
* Staff with basic medical training or	2
doctor (winter)	
Distance to hospital	5000 km
Closest emergency facility in	1100 km
Antarctica	
Closest emergency facility external	5000 km
* Capability	Basic, Dental, Surgery, Other
* Beds	1
* Medical research capabilities	Yes
* Medical screening requirements	Yes
* Equipment	Altitude medicine, Anaesthesia, Biochemistry, Diagnostic ultrasound,
	Diagnostic x-ray, Haematology, Lab. diagnostics, Telemedicine,
	Ecography.

Vehicles at facility

Land	1 Toyota hi lux, 1 Kassbohrer PB100, 1 Kassbohrer PB330, 4 Bombardier Skidoo, 1
trasportation	Alpine Skidoos, 1 tracked loader Cat 953, 1 Merlo telehandler , 1 Challenger cat 65
	in summer, bicycles

Workshop facilities

* Workshop facilities	ICTS (Staff available to assist with construction), Mechanical, Metal workshop,	
	Wood workshop	

Communication

* Communications	Computer, E-mail, Internet, Satellite phone, Telephone, VHF
------------------	---

Access

* Access Air, Land

Aircraft landing facilities

Number of	1
airstrips	
Length of longest	2000 m
runway	
Width of longest	50 m
runway	
Airstrip surface	Snow
Description of	Landing is suitable
airstrips	with ski only
Helipad	No

Transport and freight

* Transport to facility	Airplane, Traverses from Cap Prudhomme
No. of flight visits / yr	20
Period of flight visits / yr	November to February

© EU-PolarNet Consortium

Permitting issues categories

Permits required for access to the facility	Access to the station is authorized by the Steering Committee of Concordia
Permits required for studies	Access to the station is authorized by the Steering Committee of Concordia
Contact (permit issues)	dirpol@ipev.fr / direzione@enea.pnra.it

Human activities

	Human activity	No
	Recreation	None
*	Long term monitoring	Yes
*	Waste management	Yes
*	Hazard management	Yes
*	Fuel spill response capability	Yes

Example of an Arctic European Station: The Swedish Abisko Scientific Research Station

Background

*	Station Code	IN0703
*	Facility Name	Abisko
	Website	www.polar.se/abisko
	Location	Sub-Artic
*	Туре	Station
*	Current status of	Open
	facility	
*	Opening year	1911
*	Operating country	Sweden
*	Operational period	All year round

;	*	Contact	Magnus Augner
		person	
;	*	Email	magnus.augner@polar.se
;	*	Date of last	19/05/2016
		update	

Introduction

*	Facility	The Abisko Scientific Research Station is owned by the Swedish Polar Research Secretariat.
	name and	
	Operator	
*	Location	The station is located about 200 km north of the Arctic Circle and approximately 385 m
		a.s.l., on the south shore of the lake Torneträsk in the Swedish county of Norrbotten. It is
		situated in a 46-hectare nature reserve bordering the Abisko National Park, which covers
		75 km2. The station is located in birch forest and the nearby area offers a great variety in
		topography, geomorphology, geology, and climate, as well as flora and fauna. The highest
		mountain in the area reaches 1991 m a.s.l.
*	Biodiversity	The average annual temperature is approximately 0°C. Annual precipitation for the lake
	and natural	varies greatly over an east west gradient with 1000 mm in the west to 400 mm in the east.
	environment	Mean annual temperature and the length of the growing season have been increasing over
		the last decades. The vegetation is extremely varied, ranging from the simple communities
		that follow retreating glaciers to more complex mountain birch forest ecosystems. About
		40% of the surroundings are above the treeline. The area is sparsely populated and land
		use is minimal being dominated by reindeer husbandry, hunting, fishing, tourism, and
		research.
*	History and	The Abisko Scientific Research Station was established in 1913. The station can host almost
	Facilities	100 visitors. Accommodation is available in 28 double rooms, seven 4-bed-rooms and four
		family apartments. In addition, there are also laboratories, offices, workshops and lecture
		theatres. Meals are either prepared by the visiting scientists themselves in one of the self-
		catering kitchens available at the station or, during the tourist season, obtainable at tourist
		hotels and guest houses within 15 minutes walk. In the nearby village Abisko there is a well
		equipped grocery store.
*	General	Research focuses on plant ecology, geomorphology, and meteorology. The main objectives
	research	of the ecological studies are the dynamics of plant populations, identification of the
	and	controlling factors at species latitudinal and altitudinal limits, understanding of ecosystem
	databases	structure and function, and prediction of impacts of global environmental change. The

© EU-PolarNet Consortium

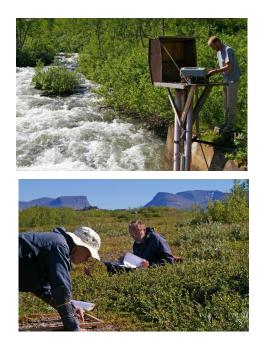
		meteorological projects deal with recent Climate Change in the region and local variations in the microclimate. The geomorphology research focuses on the mass-wasting of mountains and sediment transport. Existing databases includes bibliography of publications arising from research at the station, climate records, biological, and physical parameters modelling.
*	Human dimension	The nearest settlement is the village Abisko which lies about 1 km from the station. The main occupations of the approximately 180 inhabitants are within tourism, transports, and trade. In Abisko there is also both a kindergarden and a school up to the ninth grade. There are a number of tourist hotels in the area, providing a base for both summer and winter tourism. The area is also inhabited by the Sami people who use the area for reindeer husbandry.
*	Access	The Abisko Scientific Research Station is easily accessible by train, car, bus, and airplane. There are direct trains from the Swedish capital Stockholm to Abisko. The closest railway station is situated less than 1 km away. The resarch station is located just along the main road between Kiruna (Sweden) and Narvik (Norway). Both in Kiruna (100 km away) and Narvik (75 km away) there are airports with several daily flight connections to Oslo and Stockholm. During the tourist season there are bus connections from Kiruna airport to Abisko.

Operator / Manager

*	Facility operator / manager	Swedish Polar Research
		Secretariat
*	Type of entity	Government
*	Contact facility	magnus.augner@polar.se or
		ans@ans.polar.se
	Website (operator)	www.polar.se

Partner institutions

Partnership	No
Partner Institution Name	-
Partner Institution Country	-


Location

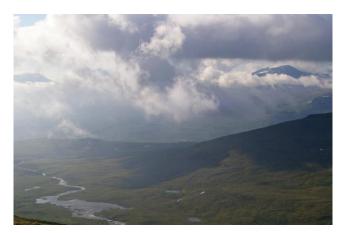
*	Latitude	68° 21′ 00. ′′N
*	Longitude	18° 49′ 00. ΄′E
*	Region	European Arctic
	Antarctic Environmental	-
	Domain	
	Antarctic Conservation	-
	Biogeographic Zone	
*	Altitude of facility	385 m
	Distance to nearest transport	-
	facility	
	Distance to nearest station	-
	Type of surface facility built	-
	on	

Features in the facility area

* Features in the facility	Ice cap or glacierLake
area	MountainPermanent snowpatches

© EU-PolarNet Consortium

Rivers
Shoreline
Tree line
• Tundra
Valley
 Shrub tundra
Gramminoid tundra
Forest tundra
Peatlands
Wetlands
Palsa mires
Deciduous forest
Evergreen forest


Main science disciplines

*	Main science disciplines	Atmospheric chemistry and physics;
		Climate change; Climatology;
		Environmental sciences; Geocryology;
		Geodesy; Geology; Geomorphology;
		Geophysics; GIS; Glaciology; Hydrology;
		Mapping; Paleolimnology; Pollution;
		Sedimentology; Soil science; Terrestrial
		biology; Other

Climate

*	Climate zone	Sub-Arctic
*	Permafrost	Discontinuous
*	Mean annual wind speed	3.9 km/h
	Max. wind speed	51.5 km/h
	Dominant wind direction	West
*	Snow free period	
	Precipitation type	Snow and Rain
*	Period of temperature	-
	measurements (start)	
*	Period of temperature	-
	measurements (end)	
*	Mean annual Temp.	-0.6°C
	Mean Temp. Jan.	-
*	Mean Temp. Feb.	-11°C

	Mean Temp. March	-
	Mean Temp. April	-
	Mean Temp. May	-
	Mean Temp. June	-
*	Mean Temp. July	11 °C
	Mean Temp. August	-
	Mean Temp. Sept.	-
	Mean Temp. Oct.	-
	Mean Temp. Nov.	-
	Mean Temp. Dec.	-
	Max. Temp. (absolute) - date	-
	Max. Temp. (absolute)	-
	Min. Temp. (absolute) - date	-
	Min. Temp. (absolute)	-

© EU-PolarNet Consortium

Infrastructure

*	Area under roof	5000 m ²
*	Area Scientific laboratories	600 m²
*	Type of scientific laboratories	-
*	Logistics area	500 m ²
*	Number of beds	102
*	Showers	Yes
*	Laundry facilities	Yes
*	Hydroponics facilities	-
*	Power supply (type)	-
*	Power supply	220 V
	Power supply	24 hours per day

Staff capacity

*	Number of support staff on station (peak/summer season)	14		
*	* Number of scientists on station (peak/summer season)			
*	Number of support staff on station (off peak/winter season)	10		
*	* Number of scientists on station (off peak/winter season)			
*	Max number of personnel at any one time (staff, scientists and other)	90		
	Number of tourists (annual average)	-		

Scientific equipment

Specific devices / Scientific equipment	Yes (basic lab and field work equipment - contact the station for details)
Scientific services possible	Technical and field-work support, sampling, etc. year-round by technicians
Long-term monitoring/observations	Climate/weather, greehouse gases, phenology

Medical facilities

m

Vehicles at facility

Γ	Land	Cars, minibus, snowmobile	
	transportation		
C	EU-PolarNet Consc	rtium	26/07/2016

Workshop facilities

* Workshop facilities	ICTS (Staff available to assit with constructions); Mechanical; Metal workshop;
	Plexiglas workshop; Wood workshop

Communication

* Communications	Computer; E-mail; Fax; Internet; Printer; Satellite phone; Scanner;					
	Telephone					

Access

* Access Air, Land

Aircraft landing facilities

Number of airstrips	0
Length of longest runway	-
Width of longest runway	-
Airstrip surface	-
Description of airstrips	Landing is suitable with ski only
Helipad	Yes

Transport and freight

* Transport to facility	Airplane; Car; Other
No. of flight visits / yr	-
Period of flight visits / yr	-

Permitting issues categories

Permits required for access to	Yes
the facility	
Permits required for studies	Yes
Contact (permit issues)	magnus.augner@polar.se

Human activities

	Human activity	Yes
	Recreation	-
*	Long term monitoring	Yes
*	Waste management	Yes
*	Hazard management	Yes
*	Fuel spill response capability	No

4.2 European Polar Research Vessels

4.2.1 General information

Eurofleets2 has recently identified worldwide 14 operational Category A vessels potentially empowered to accomplish research in the Polar Oceans, operating at least in first-year sea-ice (according to the new Polar Code classification, between PC1-PC5). Only two of these vessels are European: Polarstern (Germany) and Oden (Sweden). These two heavy icebreakers operate in both Polar Oceans. Polarstern is reaching the end of its life time, after 30 years of continuous operation, while Oden has an estimated 15 years to go without a major refit.

European Category B and C ships are more numerous: 9 and 5 vessels were identified, respectively. They are generally designed for science or logistic purposes. Six of them operate in both Polar Oceans, 6 in Arctic only and 3 in Antarctic only. Most of them a relatively old: L'Astrolabe (France) and Italica (Italy) will stop their polar activity in 2017. The James Clark Ross (United Kingdom) and the Hespérides (Spain) will continue in operation until 2020 at the end of their expected life time, while the Ernest Shackleton (United Kingdom) will reach 30 years of polar service by 2025. Only three of the ice classified PRVs, i.e. Arni Fridriksson (Iceland), GO Sars (Norway) and the Maria S. Merian (Germany), mostly operating in Arctic waters, will remain in operation well beyond year 2020.

All of these Research Vessels also have capacities to support polar stations within the Antarctic or Arctic areas, and a few of them are fully equipped for multidisciplinary science. Regarding vessels with full capacity of year-round operations, Europe is currently limited to two PRVs, the German "Polarstern", and the Swedish "Oden" (Figure 4). Among these PRVs, only the "Polarstern" is exclusively dedicated to research.

Figure 4 – The two polar Class A European Research Icebreakers, Polarstern (left) and Oden (right)

The list of identified Euroepan Polar Research Vessels is given in Table 8.

© EU-PolarNet Consortium

 Table 8 - Summary of Heavy (A) PRV Ice-Classes for year-round polar operations and Ice-Class PRVs for winter navigation in subpolar operations - modified

 from EUROFLEETS2 (Data collected by Eurofleets 2 project)

Polar Code Category	IACS Class	Ship Name	Picture	Country	Length (m)	Built year	Operator	Ice Class New Polar Code	Operating	area	Major Refit	Supply Station
А	PC1 to PC3	Polarstern	Jet -	Germany	118	1982	AWI	PC2/PC3	Antarctic	Arctic	2002	Yes
		Oden	-	Sweden	108	1988	SMA	PC2/PC3	Antarctic	Arctic		Yes
		Aranda		Finland	59.2	1989	Finnish Env. Insti.	PC-6		Artic		No
		Astrolabe	Litz	France	65	1986	IPEV/P&O Maritime	PC 6	Antarctic			Yes
		Akad.Federov		Russia	141	1987	AARI	PC 6	Antarctic	Arctic		Yes
		James C. Ross		UK	99	1990	BAS	PC 6	Antarctic	Arctic		No
в	PC6 to PC7	Maria S Merian		Germany	95	2005	IOW_Warne munde	PC 7		Artic		No
		Sanna		Greenland	32.3	2012	GINR	PC 7		Artic		No
		Italica		Italy	130	1981	DIAMAR	PC 7	Antarctic			Yes
		Helmer Hanssen	bet a	Norway	64	1988	University of Tromso	PC 7		Artic	1992	No
		Lance	distant.	Norway	61	1978	Norwegin Polar Ins.	PC 7	Antarctic	Artic		No
		G.O. Sars	5	Norway	77.5	2003	UiB	PC 7	Antarctic	Artic		No
		Hesperides		Spain	82.5	1991	Spanish Navy CSIC-UTM	PC 7	Antarctic	Artic		Yes
С	PC7 to	E. Shackleton		UK	80	1995	BAS	PC 7	Antarctic		2001	Yes
Ŭ	PC8	Dana	-	Denmark	78	1981	DTU Aqua	PC 8		Artic	1992	No
		A. Fridriksson	. AL -1.	Iceland	69.9	2000	MRI	PC 8		Artic		No
		OGS-Explora	Land the L	Italy	73	1973	OGS -Trieste	PC 8	Antarctic	Artic		No

© EU-PolarNet Consortium

4.2.2 Technical information

Eurofleets 2 has collected information on the main technical characteristics of the European Polar Research Vessels. These data are reproduced in Table 9.

Table 9 – Technical characteristics of the European Polar Research Vessels (Da	ata collected by Eurofleets 2 project
--	---------------------------------------

Polar Code		Dimensions		People		Labs		Cargo		A-Frames	Cranes	Winches (Scientific, Others)	Moon- pool	Broad- band	DP		
Category	IACS Class	Ship Name	Length	Draft	GRT	Crew	Scientifics+T echnicians	Area Wetlab (m2)	Area Drylab (m2)	Capacity Dry Cargo Area (m3)	Capacity cargo container (nº)	No. Capacity	Crane	No/Type/length (m)		yes	DPS1
А	PC1 to PC3	Polarstern	118	11.2	12640	29	55	177	182	8 TEU	54 TEU	1)	1-15T; 1-25T	11		yes	DPS1
4	PCIUPCS	Oden	108	7-8,5	9438	23	50	92		4000	12 TEU	2) Aft 20 T		CTD/6000	yes		
		Aranda	59.2	4.6	1734	12	27	67	43	2TEU	1TEU	2) 10T/1,5T	Aft:3 T/	5) Electr/Mec 700;4000	no	yes	no
		Akademik Federov	141	8.5	12660	80	160	07	-13	8595	1110	2/ 101/ 1,51	A11.5 1/	5) Licelly Mcc 700,4000	110	yes	110
		James Clark Ross	99	6.3	5732	26	50	23.5	44	1500	5 TEU	2) Aft 20 T; Midship 30 T	20T/20m	2) Hydr/Con 9000;8000	no	yes	yes
В	PC6 to PC7	Maria S Merian	95	6.5	1345	23	23	120	270	7 TEU	14TEU	200 kN	7 cranes. 3	6) fib op/mech/elc		yes	DPS1
		Sanna	33.2	3.5	450	6	10			1	TEU+ 2-10 fe	e 1) 4 T		all of 2000	no	no	no
		Helmer Hanssen	64	5.95	2052	11	29	30	50	500			4T-14 m, 2T-9 m	4) Ctd/Hydr/Dreg/Traw 4000;3000;3500;2400		yes	
		Lance	60.8	6.5	1334	13	25	25	46	615	1 TEU	1T /4,2 m	10 T-9m	3) Mec/Cond/Tra			
		G.O. Sars	77.5	5.8	1408	19	13	8	18				0 Stern 24 T	CTD/Hydr/Dee/ Sei/ Corer	2 Dronkeels		
		Hespérides	82.5	4.42	2827	55	35	72	195	393	2TEU	2) 10T/4T	2) 2T	5/CTD/Hydr/Corer/	no	ves	no
с		Ernest Shackleton	80	6.15	1800	25	45	45	45	3000	4 TEU		Stern 10 7/Rov 5 1/10M Cargo 30 T-20m	5, 612, 1, 4, 60. 61,		yes	DPS1
		Dana	78	6.1	2545	28	10	52	118	550			Fish. Gears 2) 30 T; 3) 25T	CTD/Hydr/Fib op 1800;2500; 4000	no	yes	no
		Arni Fridriksson	69.9	6.8	2233	16	16	45	16					3) CTD/Hydr/Zoopk	no	yes	no
		OGS-Explora	73	4.8	1408	17	12	60	116	500			Stern 1T/Mid 8T	1		yes	no

© EU-PolarNet Consortium

4.2.3 Scientific equipment onboard

Similarly, Eurofleets 2 has collected information on the scientific equipments on board the Euroepan Polar Research Vessels (Table 10).

Table 10 – Scientific equipment on board the European Polar Research Vessels (Data collected by Eurofleets 2 project

Polar Code	IACS	Ship Name	Acous	itics	Geop	hysics		Coring			Seismic			Sampling			Water	column	
Category	Class		Multibeam	Parametric	Grav.	Magne.	Gravity	Piston	Multi	Navigation	Streamer	Air Guns	Nets	Multinets	Dredge	СТД	Radiom.	LADCP	ADCP
А		Polarstern	Hydrosweep DS II	Parasound DS III	KSS31		yes	yes	yes	no	yes	yes	yes	yes	yes	yes		yes	yes
	PC3	Oden	EM122	SBP120		no	yes	yes	yes	yes	yes	yes	yes			yes			
		Aranda	no	no	no	no	yes	yes	yes	no	no	no	yes	yes	yes	yes	yes		yes
		Akad.Federov																	
		James C. Ross	no	SBP, 3,5 kHz	yes	no				yes	yes	yes	yes		yes	yes	yes		yes
в		Maria S Merian	EM120/EM1002	TOPAS PS 18			yes	yes	yes				yes	yes	yes	yes	yes	yes	yes
	PC7	Sanna	no	no	no	no				no	no	no	yes	yes	yes	yes			yes ?
		Helmer Hanssen	EM300	SBP			yes		yes				yes			yes			yes
		Lance	no				C	an operate		no	no	no				yes			yes
		G.O. Sars	EM300/EM1002	TOPAS PS 18	no	no	yes	yes	yes	yes	HIGH RES.	yes	yes	yes	yes	yes	yes	yes	yes
		Hesperides	EM120/1002S/	TOPAS PS 18	yes	yes	yes	yes	no	yes	HIGH RES.	yes	yes	yes	yes	yes	yes	yes	yes
		E. Shackleton	EM12	no		no													
с	PC7 to PC8	Dana	no	no	no	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes			
		A. Fridriksson	EM300													yes			yes
		OGS-Explora	SEBAT 8150/8111	CHIRP 6600	yes	yes	yes	yes	yes	yes	yes	yes				yes	yes		yes

© EU-PolarNet Consortium

4.3 European Polar Research Aircrafts

The only two nations operating their own polar aircraft are Germany (AWI) and the UK (BAS). The fleets of AWI and BAS are described below.

4.3.1 The fleet of AWI

The fleet and associated infrastructures

AWI operates two research aircraft, the Polar 5 and Polar 6 (Figure 5), which are largely identical: Polar 5 (C-GAWI) || Polar 6 (C-G HGF) Name (Registry): Model: Basler BT-67 (based on DC-3T) Manufacturer: Basler Turbo Conversions (Douglas) Year commissioned at AWI: 2007 (Polar 5) || 2011 (Polar 6) Length: 20.66 metres Wingspan: 29 metres Basic weight: 8.3 t (with ski landing gear 8.9 t) Engines: 2 x Pratt & Whitney PT6A-67R Output per engine: 1,281 HP Fuel consumption: 570 litres / hour Max. take-off weight: 13 t Max. take-off elevation on skis: 4,200 metres Range without payload: ca. 3,000 kilometres Range with 1,000 kg payload: 2,300 kilometres Max. cruising speed: 370 kilometres / hour (wheel gear only) 167 kilometres / hour Min. cruising speed:

Figure 5 - Polar 5 and Polar 6, the two polar research aircrafts operated by AWI

The personnel involved

- Crew: 2 pilots and 1 mechanic
- Science support during surveys: normally 2 engineers/technicians
- Science support for integration of new instruments by team of several engineers
- Operator on board during survey flights: max. 6
- PAX on board for transit flights: max. 18

The scientific equipment available on board (AWI owned only)

- laser scanner/altimeter: Riegl VQ-580, Riegl LMS-Q680i, Riegl LD90, Astech LDM301
- ice penetrating radar systems: ice thickness radar, accumulation radar, snow thickness radar, ultra-wideband

© EU-PolarNet Consortium

radar, microwave ultra-wideband radar

- magnetometer: Scintrex
- Gravity meter: ZLS, GT-2a
- GPS: Novatel, Javad
- cameras: Canon SLR, video, GoPro
- Hyper spectral camera: Sepcm AIRAS
 Eagle
- Hygrometer CR2
- Thermeter: PT100
- Radiation thermometer KT19
- 5hole probe with absolute and relative humidity, AIMMS20, AIMMS30
- Nezerov probe
- Aerosol lidar AMALI

- Methane sensor Los Gatos RMT200
- Radiation sensors: Ocean optics (long & short wave) Kipp&Zonen pyranometer & pygeometer
- Single particle photometer SP2
- Ultra high sensitivity aerosol spectrometer
- Drop-sonde launch system AVAPS lite
- PMS cannisters
- EM bird
- Data acquisition system ADA

The type of science supported

Monitoring and recording interactions between the Earth's crust, ice- and snow-covered areas, oceans and the atmosphere:

- Mapping of the Earth's magnetic and gravity field, ice thickness & structure, sea ice thickness, snow thickness on sea ice, surface morphology/altimetry
- Measuring in-situ and remotely aerosols and trace gases
- Measuring temperatures, humidity, wind distribution
- Radiation measurements
- Optical remote sensing
- Besides scientific operations, the aircrafts are maintaining logistics between different international research stations in the Antarctic, where the AWI is an active member of the international DROMLAN Network

The AWI strategy in term of aircraft in Polar Regions in the next decade

As in the past, in the forthcoming years AWI aircraft will be operating in Antarctica, as well as in the Arctic in each season. The aircraft will be used for scientific expeditions and for logistic tasks in order to support the science.

4.3.2 The fleet of BAS

The fleet and associated infrastructures

The British Antarctic Survey operates 5 research aircraft: 4 Twin Otters and a Dash 7.

	Twin Otter	Dash 7
Aircraft Registrations	VP-FAZ, VP-FBB,	VP-FBQ
	VP-FBC, VP-FBL	
Range	1,000km	>2,000km
Cruise Speed	65m/s (135 knots with skis, 150kt	120m/s (200kts)
	clean)	
Survey Speed	60m/s	110m/s
Crew	1 Pilot (dependant on role)	2 Pilots
Mission scientists (max)	4	4
Fuel Consumption (planning)	330l/hour	630l/hour
Max Take Off weight	6,360kg (14,000lb)	21,300kg (47,000lb)
© EU-PolarNet Consortium		26/07/2016

Survey power available	300A (28V)	300A (28V)	
------------------------	------------	------------	--

The type of science supported

The aircraft have supported research monitoring and recording interactions between the Earth's crust, ice- and snow-covered areas, oceans and the atmosphere. This is both from a logistics perspective in deploying instruments and field camps but also as airborne research platforms.

- Mapping of the Earth's magnetic and gravity field, ice thickness & structure, sea ice thickness, snow thickness on sea ice, surface morphology/altimetry
- Measuring in-situ and remotely aerosols and trace gases
- Measuring temperatures, humidity, wind distribution
- Radiation measurements
- Optical remote sensing

Twin Otter

Four aircraft of the DHC 6 300 series with STOL capabilities. They can operate from paved and unpaved surfaces. All four can undertake polar logistics support including to sea-ice camps. They can be equipped with wheel skis and have extended range tanks fitted. Two aircraft are modified to support airborne and remote sensing applications.

Airborne Atmospheric Research Capabilities of the Twin Otter (VP-FAZ)

Instrumentation for Atmospheric Research:

Total Temperature	Goodrich Rosemount Probes mounted on the nose. A non-de-iced model 102E4AL and a de-iced model 102AU1AG logged at 0.7Hz.
Altitude and Position	GPS NMEA and one pulse per second (1pps) is distributed to all systems to provide synchronisation of all the data and formation of coherent data sets.
Air Speed	Static and dynamic pressure from the aircraft static ports and heated pitot tube, logged using Honeywell HPA sensors at 5Hz.

© EU-PolarNet Consortium

Cooled-Mirror	A Buck 1011C cooled mirror hygrometer is fitted. Chamber pressure and mirror
Hygrometer	temperature are recorded at 1Hz. A Rosemount mounted Vaisala Humicap sensor is also
	logged.
Radiometers	Eppley PIR and PSP sensors fitted to the roof and underside of the aircraft. Logged at
	around 10Hz.
Infra-red Thermometer	Heimann model KT19.82 infra-red thermometer mounted in the floor hatch panel. There
	is a solenoid operated, ambient temperature, black-body calibration target that can be
	brought into view during flight. Data are recorded at around 10Hz.
Laser Altimeter	A Riegl LD90-3800VHS-FLP Laser Altimeter is fitted in the floor hatch. Returns up to a few
	hundred metres are possible depending on the surface at repetition frequencies up to
	2kHz.
Cameras	Two Sony DV-tape cameras can be used. One downwards-looking mounted in the camera
	hatch, one forward-looking mounted in the cockpit. A Canon EOS7D with 15mm lens can
	be triggered to take 18MP images at up to 1 frame/sec.
Laser Scanner	A Riegl Q240 80 degree laser scanner has been used for mapping sea ice.
Radar Altimeters	Data are recorded from the aircraft's two radar altimeters at around 10Hz. These have a
	range of 1000m with a wider beam compared to the laser altimeter.
Turbulence Probe	A NOAA/ARA BAT 'Best Aircraft Turbulence' probe is fitted on a boom extending forward
	from the roof of the aircraft. This 9-hole probe records pressures and exposed
	thermocouple temperatures for measuring turbulence by eddy covariance in conjunction
	with attitude measurements. Three-axis accelerometer data are also recorded from the
	BAT probe. Heaters are fitted inside the hemisphere to enable the instrument to be
	usable even after encountering icing.
GPS Position	Around 5m position accuracy recorded at 10Hz from the JAVAD 4-antenna GPS attitude
	system. For greater accuracy this is supplemented by a Trimble 5700 survey system using
	an antenna mounted above the laser altimeter and processed in kinematic mode with a
	second ground based unit.
GPS Attitude and	A JAVAD AT4 4-antenna GPS system records heading, pitch and roll at 20Hz and velocites
Reference System	at 10Hz. Antennas are permanently fitted to each wingtip and fore and aft of the
	fuselage.
Inertial Attitude and	Aircraft attitudes and rate of change are recorded from the aircraft avionics Litef AHRS
Heading Systems	system. This is converted from ARINC format at 64Hz. There is also an OXTS Inertial+ GPS
5 5 5 7 F F	linked INU available which stores data internally operating at 100Hz.
Wing Hardpoints	Both wings have hardpoints, zivko carbon fibre pylons and cabling to accept PMS
	footprint instruments.
Cloud Probe	An under-wing pylon mounted Droplet Measurement Technologies CAPS Probe
	comprises of a 2D imaging probe (25μm-1550μm), aerosol spectrometer (0.5μm-50μm)
	and liquid water content probe (0.01-3.0g/m3). The probe has a dedicated logging PC
	and comprehensive instrument de-icing heaters. An under-nose mount for a DMT CDP
	instrument has also been fitted.
Closed Path water	A LICOR LI-7000 closed path infra-red gas analyser is fitted. Sampling is from a Rosemount
vapour and CO2 sensor	inlet and readings are triggered at 50Hz.
Aerosol Inlet	A Brechtel Model 1200 Isokinetic Inlet is fitted. >95% efficient for 0.01µm to 6µm.
Condensation Particle	A TSI 3772 CPC is available.
Counter	
Aerosol Spectrometer	A Grimm model 1.109 portable aerosol spectrometer. 31 channels 0.25µm to 32µm.
Central Logging System	All instruments apart from the CAPS probe are logged to a single rack PC using Labview
	and associated National Instruments hardware including networked compact Fieldpoint
	modules in the roof and floor. The logging can be monitored and controlled from the
	main rack in the cabin as well as a remote touch screen in the co-pilot's seat. CAPS has a
	dedicated computer. Dual KVM switches allow both the rear operators screen and the
	cockpit display to switch to either PC.
ASIRAS	ASIRAS is an airborne SAR-altimeter instrument owned by ESA.
	ASIRAS is an an borne sak-an interer instrument owned by Esa. ASIRAS is essentially a Ku-band altimeter but with a high pulse repetition frequency such
	that it is phase sensitive and pulse-coherent. The carrier frequency of the radar is 13.5

© EU-PolarNet Consortium

GHz and the bandwidth is 1 GHz. It returns information on surface snow including over
sea ice.

Airborne Geophysics Research Capabilities of the Twin Otter Aircraft (VP-FBL)

GPS Positioning	Two GPS logging at 2Hz and 10Hz are used. This provides a true dual redundant system
	utilising two dissimilar GPS receivers, mitigating against drop-outs due to firmware
	coding errors. A Leica GPS 500 provides the primary GPS and a Novatel DL-V3 provides
	the system redundancy.
GPS NMEA and 1pps	GPS NMEA and one pulse per second (1pps) are distributed to all systems to provide
distribution	synchronisation of all the data and formation of coherent data sets.
Inertial Measurement	Aircraft attitude and inertial information is provided by an IMAR FSAS inertial unit
Unit (IMU)	(being a non-ITAR controlled system it can be more readily used in foreign countries).
	The IMU data is logged to a Novatel Span receiver.
Magnetometer	Sintrex CS3 sensors are used due to their high sensitivity, high cycling rates, excellent
	gradient tolerance, fast response and low susceptibility to the electromagnetic
	interference.
AGIS (Airborne	The AGIS data-logging system is used to log the magnetometer data at a frequency of
Geophysical	10Hz with a sensitivity of 1 pico Tesla, radar altimeter data and fluxgate magnetometer
Information System)	is also logged. AGIS also provides pilot guidance information.
Radar Altimeters	Data are recorded from the aircraft's radar altimeter fitted in the tail section at 10Hz.
	These have a range of around 800-1000m and a wider beam compared to the laser
	altimeter.
Fluxgate Magnetometer	A Billingsley TFM100G2 fluxgate magnetometer is mounted in the tail of the aircraft.
	This provides corrections for magnetometer data.
Laser Altimeter	A Riegl LD90-3800VHS-FLP Laser Altimeter is fitted in the floor camera hatch. Returns
	up to 700m over snow are possible depending on the surface reflections. A repetition
	frequencies up to 2kHz can be achieved giving an along-track measurement every 3cm
	with an accuracy up to 5cm.
Lidar	A Riegl LMS-Q240i provides a near-infrared solution for ice research in Polar Regions
	for ranges up to 650m at 2cm accuracies. An Optech ALTM 3100EA* or Leica ALS50
	provides an infrared-based solution suitable for high altitude (1km nominal) wide area
	(5000+ km2) surveys at 5cm accuracies.

Ice Penetrating Radar	The ice-penetrating radar is a coherent two pulse radar with an output of 4KW radar at
	150MHz. The radar is capable of imaging ice to depths of 5km with an along track
	resolution of 10cm before processing and a depth resolution of 8m.
Gravimeter	Aero gravity measurements are acquired with a modified LaCoste and Romberg air/sea
	gravimeter. Crossover analysis indicates the free-anomaly field is accurate to ~5mGals
	for wavelengths greater than 10km. A Chekan* airborne gravimeter has also been
	flown in Antarctica. Various IMAR strap down gravity systems have also been flown.
AHRS	A secondary aircraft attitude reference is available from the aircrafts Litef LCR92
	attitude and heading reference system.
VGA and HD video	A solid state standard or HD Sony video camera can be installed to provide forward
cameras	looking or downward looking video. This provides standard or high definition video and
	a forward view for the operator when located in the cabin. These can be time stamped
	or overlaid with GPS position.
Canon 7D	A downward pointing DSLR in the camera bay provides synchronised high resolution
	surface imagery.
ASIRAS	ASIRAS is an airborne SAR-altimeter instrument owned by ESA.
	ASIRAS is essentially a Ku-band altimeter but with a high pulse repetition frequency
	such that it is phase sensitive and pulse-coherent. The carrier frequency of the radar is
	13.5 GHz and the bandwidth is 1 GHz. It returns information on surface snow including
	over sea ice.
POLARIS	POLARIS is a large antenna enclosure capable of housing a variety of antenna arrays.
	The current configuration houses four 150MHZ antennas to be used with the PASIN
	radar system.

Photographic and Remote Sensing Capabilities of both Twin Otter Aircraft (VP-FAZ and VP-FBL)

Specim AISA Fenix	· Spectral range 400-2500nm (VNIR & SWIR)
	• 620 spectral bands with single optic for both VNIR & SWIR but two spectrometers
	and two diffraction gratings, one optomised for VNIR, the other for SWIR
	· 3.5 nm bandwidth in VNIR, 10 nm bandwidth in SWIR.
	· Field-of-View 32.3°
	 Spatial resolution @ 1000m (above ground level) is 1.52m
	Swath @ 1000m (above ground level) is ~600m (384 spatial pixels)
	• 12 bit output in VNIR, 16 bit output in SWIR
Specim AISA Owl	· Spectral range 7.6-12.5um (LWIR)
	· 100 spectral bands
	 100nm bandwidth (diffraction grating limited)
	· Field-of-View 24°
	 Spatial resolution @ 1000m is 1.2m
	 Swath @ 1000m ~410m (384 spatial pixels)
Leica Geosystems	· 1064nm wavelength laser
ALS50-II LIDAR	 Field-of-View between 45° and 75° (as required)
	Oscillating mirror system
	 Average point density 1.8 points /m² (nadir) @ 1000m (above ground level)
	 XY accuracy 0.1m and Z accuracy 0.08m
	 Pulse rate 150kHz single and multiple pulse in the air.
	• Maximum scan rate 90Hz
	 Maximum operating altitude (AGL): 3500m (II 500ft)
	 Both discrete and full wave-form intensity data available
Intergraph's Z/I Imaging	Eight individual modules
Digital mapping Camera	 4 high resolution 7k x 4k panchromatic camera heads
(DMC)	 4 multispectral 3k x 2k camaera heads
	 Field-of-View 69.3° cross track, 42° along track

© EU-PolarNet Consortium

	Pixel size of 12um x 12um 15cm GSD @ 550m (140 knts) with 60% overlap 12 bit output (all cameras) Turnkey post-processing application software Operated individually rather than with other instruments
--	---

Dash 7

This is a 110 Series aircraft with STOL capabilities that can be operated from both paved and unpaved surfaces.

The aircraft has magnetometer pods on the wing hard points. In addition, there is an instrument port with the dimensions 1.6 x 0.6m. The maximum instrument height is 1.2m including the pressure box associated with the port.

There are fuselage hard points for planar antennas.

Magnetometer	Sintrex CS3 sensors are used due to their high sensitivity, high cycling rates,
	excellent gradient tolerance, fast response and low susceptibility to the
	electromagnetic interference.
Altitude and Position	GPS NMEA and one pulse per second (1pps) is distributed to all systems to provide
	synchronisation of all the data and formation of coherent data sets.
Gravimeter	Aero gravity measurements are acquired with a modified LaCoste and Romberg
	air/sea gravimeter. Crossover analysis indicates the free-anomaly field is accurate
	to ~5mGals for wavelengths greater than 10km. A Chekan* airborne gravimeter
	has also been flown in Antarctica. Various IMAR strap down gravity systems have
	also been flown.
GPS Positioning	Two GPS logging at 2Hz and 10Hz are used. This provides a true dual redundant
	system utilising two dissimilar GPS receivers, mitigating against drop-outs due to
	firmware coding errors. A Leica GPS 500 provides the primary GPS and a Novatel
	DL-V3 provides the system redundancy.
Radiometers	Eppley PIR and PSP sensors fitted to the roof and underside of the aircraft. Logged
	at around 10Hz.
Intergraph's Z/I Imaging	
Digital mapping Camera	
(DMC)	

© EU-PolarNet Consortium

The BAS strategy in term of aircraft in Polar Regions in the next decade

We aim to execute a safe, challenging programme of airborne science and logistics and to provide a worldwide capability that gives the environmental science community access to a range of aircraft platforms and instrumentation.

5. European Polar Infrastructures catalogue

All the data collected under the Task 3.1 of the Eu-PolarNet will be available on the website of the project in an interactive format. The legacy of the databases will be supported by the European Polar Board when the EU-PolarNet project will be completed. COMNAP will also publish the data on its website but will extend its information to the whole Antarctic facilities, not only the European ones.

A synthesis of all the information collected is expected to be published as a pdf document, which will be downloadable on the EU-PolarNet website. This document will be ready by the end of 2016.

Finally, as an additional contribution not planned in the EU-PolarNet project, making use of the effort on the database implementation, IGOT will develop a simple WebGIS related to the databases in order allow the production of maps in support of the other EU-PolarNet Tasks. The new database and WebGIS will be facilitators of the forthcoming Deliverables of Work Package 3.

The sum of data collected under this Task 3.1 can be summarized with the following flow chart which also emphasizes the established partnerships (Figure 6):

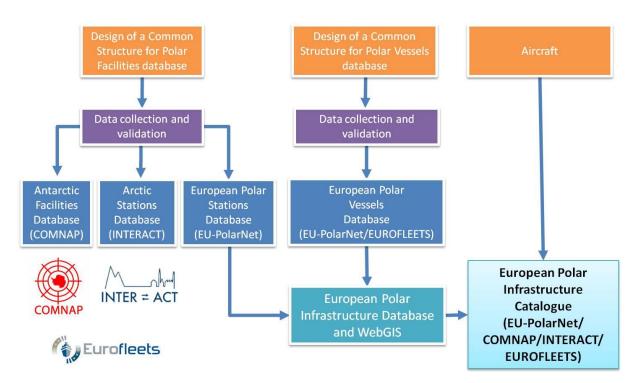


Figure 6 – Partnerships, sources of data and products of the EU-PolarNet Task 3.1